logo CRAS
Comptes Rendus. Mécanique
Note
Asymptotic approach to a rotational Taylor swimming sheet
Comptes Rendus. Mécanique, Tome 349 (2021) no. 1, pp. 103-116.

The interaction of a viscous fluid and a circular, pre-stressed active shell is studied in the limit of low Reynolds numbers. A seminal paper of Taylor represents a benchmark for this class of problems. Here, inspired by the same approach, we determine with asymptotic techniques the possible swimming motions of the shell for the particular changes of curvature that it can achieve when actuated. We confirm numerical results obtained previously, and highlight the structure of a problem that turns out to be similar to that of Taylor, and as such represents a simple example of Stokesian swimming.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmeca.75
Mots clés : Stokes flow, Micromotility, Morphing shells, Perturbation series, Low Reynolds swimming, Circular disk
@article{CRMECA_2021__349_1_103_0,
     author = {Giovanni Corsi},
     title = {Asymptotic approach to a rotational {Taylor} swimming sheet},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {103--116},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {1},
     year = {2021},
     doi = {10.5802/crmeca.75},
     language = {en},
}
TY  - JOUR
AU  - Giovanni Corsi
TI  - Asymptotic approach to a rotational Taylor swimming sheet
JO  - Comptes Rendus. Mécanique
PY  - 2021
DA  - 2021///
SP  - 103
EP  - 116
VL  - 349
IS  - 1
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmeca.75
DO  - 10.5802/crmeca.75
LA  - en
ID  - CRMECA_2021__349_1_103_0
ER  - 
Giovanni Corsi. Asymptotic approach to a rotational Taylor swimming sheet. Comptes Rendus. Mécanique, Tome 349 (2021) no. 1, pp. 103-116. doi : 10.5802/crmeca.75. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.75/

[1] E. Lauga; T. R. Powers The hydrodynamics of swimming microorganisms, Rep. Prog. Phys., Volume 72 (2009) no. 9, 096601 | Article | MR 2539632

[2] G. Cicconofri; A. DeSimone Modelling biological and bio-inspired swimming at microscopic scales: Recent results and perspectives, Comput. Fluids, Volume 179 (2019), pp. 799-805 | Article | MR 3944497 | Zbl 1411.76186

[3] A. DeSimone Cell Motility and Locomotion by Shape Control, The Mathematics of Mechanobiology: Cetraro, Italy 2018 ((D. Ambrosi; P. Ciarletta, eds.), Springer International Publishing, Cham, Switzerland, 2020, pp. 1-41

[4] G. Taylor Analysis of the swimming of microscopic organisms, Proc. R. Soc. Lond. A, Volume 209 (1951) no. 1099, pp. 447-461 | MR 45521 | Zbl 0043.40302

[5] R. Dreyfus; J. Baudry; M. L. Roper; M. Fermigier; H. A. Stone; J. Bibette Microscopic artificial swimmers, Nature, Volume 437 (2005) no. 7060, pp. 862-865 | Article

[6] W. Hamouche; C. Maurini; S. Vidoli; A. Vincenti Multi-parameter actuation of a neutrally stable shell: a flexible gear-less motor, Proc. R. Soc. Lond. A, Volume 473 (2017) no. 2204, 20170364 | MR 3705641 | Zbl 1404.74096

[7] G. Corsi; A. De Simone; C. Maurini; S. Vidoli A neutrally stable shell in a Stokes flow: a rotational Taylor’s sheet, Proc. R. Soc. Lond. A, Volume 475 (2019) no. 2227, 20190178 | MR 3999707

[8] J. P. Tanzosh; H. A. Stone A general approach for analyzing the arbitrary motion of a circular disk in a Stokes flow, Chem. Eng. Commun., Volume 148–150 (1996), pp. 333-346 | Article

[9] A. Daddi-Moussa-Ider; M. Lisicki; H. Löwen; A. M. Menzel Dynamics of a microswimmer microplatelet composite, Phys. Fluids, Volume 32 (2020) no. 2, 021902 | Article

[10] I. N. Sneddon Mixed Boundary Value Problems in Potential Theory, North-Holland Publishing Company, Amsterdam, 1966 | Zbl 0139.28801

[11] C. J. Tranter A further note on dual integral equations and an application to the diffraction of electromagnetic waves, Quart. J. Mech. Appl. Math., Volume 7 (1954) no. 3, pp. 317-325 | Article | MR 65014 | Zbl 0056.43304

[12] J. D. Sherwood Resistance coefficients for Stokes flow around a disk with a Navier slip condition, Phys. Fluids, Volume 24 (2012) no. 9, 093103 | Zbl 1309.76067

[13] S. Childress Mechanics of Swimming and Flying, Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, 1981 | Article | Zbl 0499.76118

[14] E. T. Copson On certain dual integral equations, Proc. Glasgow Math. Assoc., Volume 5 (1961) no. 1, pp. 21-24 | Article | MR 199660 | Zbl 0158.12901

[15] M. S. Alnæs; J. Blechta; J. Hake; A. Johansson; B. Kehlet; A. Logg; C. Richardson; J. Ring; M. E. Rognes; G. N. Wells The FEniCS Project Version 1.5, Arch. Numer. Softw., Volume 3 (2015) no. 100, pp. 9-23

[16] J. Happel; H. Brenner Low Reynolds Number Hydrodynamics, Martinus Nijhoff Publishers, The Hague, 1983

[17] M. Sauzade; G. J. Elfring; E. Lauga Taylor’s swimming sheet: Analysis and improvement of the perturbation series, Physica D, Volume 240 (2011) no. 20, pp. 1567-1573 (Special Issue: Fluid Dynamics: From Theory to Experiment) | Article | Zbl 1431.76164

[18] W. Zhang; H. A. Stone Oscillatory motions of circular disks and nearly spherical particles in viscous flows, J. Fluid Mech., Volume 367 (1998), pp. 329-358 | Article | Zbl 0912.76015

[19] G. N. Watson A Trestise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944

Cité par Sources :