Comptes Rendus
Mécanismes physiques du nuage d'orage et de l'éclair/The physics of thundercloud and lightning discharge
Physical processes during development of lightning flashes
[Mécanismes généraux de développement de l'éclair]
Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1393-1409.

Cet article présente les connaissances actuelles des processus physiques régissant le développement de l'éclair à l'intérieur ou à l'extérieur du nuage, après la phase d'initiation. Il s'agit de proposer une vision d'ensemble du processus, à l'échelle du nuage lui-même. Depuis que le concept de leader bi-directionnel non chargé est complètement admis, notre compréhension des principaux mécanismes de l'éclair a évolué de façon significative et il est possible d'appréhender de façon analytique les relations entre la structure électrique du nuage d'orage et les paramètres caractéristiques de l'éclair. Ces nouvelles approches sont discutées en insistant sur le caractère unificateur du concept de leader bi-directionnel.

The objective of this paper is to review our present understanding of the physical processes in lightning flashes during their development within or outside a cloud, following lightning initiation. This represents the ‘big picture’ of lightning development, in the scale of the cloud dimensions themselves. Since the acceptance of the bi-directional, zero-net-charge leader concept, significant changes have occurred in our understanding of the key physical processes of which a lightning flash is comprised, and in the analytical relationship between the electrical structure of a cloud and lightning parameters. These changes are discussed with an emphasis on the unifying nature of the bi-directional leader concept.

Publié le :
DOI : 10.1016/S1631-0705(02)01412-3
Vladislav Mazur 1

1 National Severe Storms Laboratory, Norman, OK 73069, USA
@article{CRPHYS_2002__3_10_1393_0,
     author = {Vladislav Mazur},
     title = {Physical processes during development of lightning flashes},
     journal = {Comptes Rendus. Physique},
     pages = {1393--1409},
     publisher = {Elsevier},
     volume = {3},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01412-3},
     language = {en},
}
TY  - JOUR
AU  - Vladislav Mazur
TI  - Physical processes during development of lightning flashes
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 1393
EP  - 1409
VL  - 3
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01412-3
LA  - en
ID  - CRPHYS_2002__3_10_1393_0
ER  - 
%0 Journal Article
%A Vladislav Mazur
%T Physical processes during development of lightning flashes
%J Comptes Rendus. Physique
%D 2002
%P 1393-1409
%V 3
%N 10
%I Elsevier
%R 10.1016/S1631-0705(02)01412-3
%G en
%F CRPHYS_2002__3_10_1393_0
Vladislav Mazur. Physical processes during development of lightning flashes. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1393-1409. doi : 10.1016/S1631-0705(02)01412-3. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01412-3/

[1] H.W. Kasemir Qualitative Ubersicht uber Potential-, Feld- und Ladungsverhaltnisse bei einer Blitzentladung in der Gewitterwolke (Qualitative Survey of the Potential, Field and Charge Conditions during a Lightning discharge in the Thunderstorm Cloud) (H. Israel, ed.), Das Gewitter, Leipzig, Akadem. Verlagsgesellschaft, 1950

[2] H. Israel, Atmospheric Electricity, Vol. II (translated from German), published by the National Science Foundation, Washington, DC by the Israel Program for Scientific Translations, 1973

[3] V. Mazur Triggered Lightning strikes to aircraft and natural intracloud discharges, J. Geophys. Res, Volume 94 (1989), pp. 331-332

[4] T. Ogawa; M. Brook The mechanism of the intracloud lightning discharge, J. Geophys. Res, Volume 69 (1964), pp. 514-519

[5] M. Brook; T. Ogawa The cloud discharge (R.H. Golde, ed.), Lightning, Vol. 1, Physics of Lightning, Academic Press, New York, 1977, pp. 191-230

[6] M. Takagi The mechanism of discharges in a thunderstorm, Proc. Res. Inst. Atmos. Nagoya Univ, Volume 8B (1961), pp. 1-105

[7] P. Richard; G. Auffray VHF-UHF interferometric measurements, applications to lightning discharge mapping, Radio Sci, Volume 20 (1985), pp. 171-192

[8] C.T. Rhodes; X.M. Shao; P.R. Krehbiel; R.J. Thomas; C.O. Hayenga Observations of lightning phenomena using radio interferometry, J. Geophys. Res, Volume 99 (1994), pp. 13059-13082

[9] W. Rison; R.J. Thomas; P.R. Krehbiel; T. Hamlin; J. Harlin A GPS-based three-dimensional lightning mapping system: Initial observations, Geophys. Res. Lett, Volume 26 (1999), pp. 3573-3576

[10] A. Bondiou; I. Taudiere; P. Richard; F. Helloco Analyse spatio-temporelle du rayonnement VHF-UHF associe a l'éclair, Rev. Phys. Appl, Volume 25 (1990), pp. 147-157

[11] X.M. Shao; C.T. Rhodes; D.N. Holden RF radiation observations of positive cloud-to-ground flashes, J. Geophys. Res, Volume 104 (1999), pp. 9801-9808

[12] M. Stanley, Personal communications, 2002

[13] N. Kitagawa; M. Brook A comparison of intracloud and cloud-to-ground lightning discharges, J. Geophys. Res, Volume 65 (1960), pp. 1189-1201

[14] Z.-I. Kawasaki, Personal communication, 2002

[15] V. Mazur; L.H. Ruhnke Common physical processes in natural and artificially triggered lightning, J. Geophys. Res, Volume 98 (1993), pp. 12913-12930

[16] W. Beasley Positive cloud-to-ground lightning observations, J. Geophys. Res, Volume 90 (1985), pp. 6131-6138

[17] R. Thomas, Personal communication, 2001

[18] R.J. Fisher, G.H. Schnetzer, 1993 triggered lightning test program, Sandia Report, SAND94-0311 UC-706, 1994

[19] P.R. Krehbiel; M. Brook; R.A. McCrory An analysis of the charge structure of lightning discharges to ground, J. Geophys. Res, Volume 84 (1979), pp. 2432-2456

[20] V. Mazur; L.H. Ruhnke Model of electric charges in thunderstorms and associated lightning, J. Geophys. Res, Volume 103 (1998), pp. 23299-23308

[21] M. Chen; N. Takagi; T. Watanabe; D. Wang; Z.I. Kawasaki; X. Liu Spatial and temporal properties of optical radiation produced by stepped leaders, J. Geophys. Res, Volume 104 (1999), pp. 27573-27584

[22] V. Mazur; X.M. Shao; P.R. Krehbiel “Spider” lightning in intracloud and positive cloud-to-ground flashes, J. Geophys. Res, Volume 103 (1998), pp. 19811-19822

[23] D.J. Malan; B.F.J. Schonland The electrical processes in the intervals between the strokes of a lightning discharge, Proc. Roy. Soc. London Ser. A, Volume 206 (1951), pp. 145-163

[24] Z.I. Kawasaki; V. Mazur Common physical processes in natural and triggered lightning in winter storms in Japan, J. Geophys. Res, Volume 97 (1992), pp. 12935-12945

[25] E.M. Bazelyan; Yu.P. Raizer Spark Discharge, CRC Press, New York, 1998

[26] S. Heckman, Ph.D. thesis, Massachusetts Institute of Technology, 1992

[27] I. Gallimberti The mechanism of long spark formation, J. Phys. C, Volume 40 (1979), pp. 193-250

[28] Z.I. Kawasaki; K. Matsuura; T. Matsui; M. Adachi Is the bi-leader progression concept true?, Proc. 10th Internat. Conf. Atmospheric Electricity, Osaka, Japan, 1996, pp. 596-598

[29] M. Brook; M. Nakano; P. Krehbiel; T. Takeuti The electrical structure of the Hokuriku winter thunderstorms, J. Geophys. Res, Volume 87 (1982), pp. 1207-1215

[30] M. Uman The Lightning Discharge, Academic Press, New York, 1987

[31] V. Mazur; P.R. Krehbiel; X.M. Shao Correlated high-speed video and radio interferometric observations of a cloud-to-ground lightning flash, J. Geophys. Res, Volume 100 (1995), pp. 25731-25753

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The interaction between a lightning flash and an aircraft in flight

Anders Larsson

C. R. Phys (2002)


Some microphysical and electrical aspects of a Cloud Resolving Model: description and thunderstorm case study

Gilles Molinié; Jean-Pierre Pinty; Frank Roux

C. R. Phys (2002)


Observations and modeling of lightning leaders

Philippe Lalande; Anne Bondiou-Clergerie; G. Bacchiega; ...

C. R. Phys (2002)