High radiation resistant structural materials for fusion and fission nuclear power plants are a key issue for the development of both types of reactors. Selection criteria, elements of metallurgy of the selected materials, and the major issues as they are revealed by the results of the present development programmes, are presented. At low temperature (∼300 °C) ferritic/martensitic steels are suffering from He-embrittlement, associated with possible hardening due to unmixing. The kinetics of hardening and embrittlement versus dose, especially saturation with dose, are still open key issues, difficult to settle on the basis of a purely experimental programme. Important progress is still to be made in mastering the initial microstructure, inclusion cleanness and joining techniques of oxide dispersion strengthened steels for higher heat resistance. Physics modeling as presented in this issue should promote guidance to the understanding of the mechanisms involved, provide solutions to master the initial microstructure and phase stability, and mitigate the in-service property degradation.
Des matériaux ayant une excellente résistance aux effets d'irradiation sont indispensables au succès des futures centrales de fission et de fusion. On présente les critères de sélection, les éléments caractéristiques de la métallurgie et les principaux effets d'irradiation révélés par les programmes d'irradiation des matériaux retenus. A basse température (∼300 °C) les aciers ferritiques/martensitiques souffrent de fragilisation par l'hélium associée à un probable durcissement dû à la décomposition . Les cinétiques de durcissement et de fragilisation et tout particulièrement la saturation avec la dose sont des questions difficiles à trancher sur la seule base d'un programme expérimental. Des progrès importants sont encore nécessaires pour maîtriser la microstructure, la propreté inclusionnaire et l'assemblage des aciers renforcés par dispersion d'oxydes. Une modélisation physique telle que présentée dans ce volume doit servir de guide pour comprendre les mécanismes et fournir des solutions pour limiter la dégradation des propriétés en service.
Mot clés : Matériaux de structure, Acier martensitiques, Acier ferritiques, Composites $ {\text{SiC}}_{\mathrm{f}}/\text{SiC}$, Effets d'irradiation
Jean-Louis Boutard 1; Ana Alamo 2; Rainer Lindau 3; Michael Rieth 3
@article{CRPHYS_2008__9_3-4_287_0, author = {Jean-Louis Boutard and Ana Alamo and Rainer Lindau and Michael Rieth}, title = {Fissile core and {Tritium-Breeding} {Blanket:} structural materials and their requirements}, journal = {Comptes Rendus. Physique}, pages = {287--302}, publisher = {Elsevier}, volume = {9}, number = {3-4}, year = {2008}, doi = {10.1016/j.crhy.2007.11.004}, language = {en}, }
TY - JOUR AU - Jean-Louis Boutard AU - Ana Alamo AU - Rainer Lindau AU - Michael Rieth TI - Fissile core and Tritium-Breeding Blanket: structural materials and their requirements JO - Comptes Rendus. Physique PY - 2008 SP - 287 EP - 302 VL - 9 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2007.11.004 LA - en ID - CRPHYS_2008__9_3-4_287_0 ER -
%0 Journal Article %A Jean-Louis Boutard %A Ana Alamo %A Rainer Lindau %A Michael Rieth %T Fissile core and Tritium-Breeding Blanket: structural materials and their requirements %J Comptes Rendus. Physique %D 2008 %P 287-302 %V 9 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2007.11.004 %G en %F CRPHYS_2008__9_3-4_287_0
Jean-Louis Boutard; Ana Alamo; Rainer Lindau; Michael Rieth. Fissile core and Tritium-Breeding Blanket: structural materials and their requirements. Comptes Rendus. Physique, Volume 9 (2008) no. 3-4, pp. 287-302. doi : 10.1016/j.crhy.2007.11.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.11.004/
[1] P. Norajitra, L. Bühler, A. Buenaventura, E. Diegele, U. Fischer, E. Hutter, R. Kruessmann, S. Malang, J. Reimann, A. Orden, D. Ward, G. Vieider, F. Wasatjerna, Conceptual design of the dual-coolant blanket in the frame of the EU power plant conceptual study, FZKA Report 6780, November 2002
[2] Generation IV International Forum: http://www.gen-4.org
[3] N. Chauvin, J.C. Garnier, J.L. Séran, Ph. Brossard, in: Proceedings of the International Congress on Advances in Nuclear Power Plants, ICAPP-03, May 4–7 2003, Paper 3339, Cordoba, Spain
[4] Philos. Trans. Roy. Soc. London Ser. A, 357 (1999), pp. 595-623
[5] J. Nucl. Mater., 367–370 (2007), pp. 1416-1421
[6] J. Nucl. Mater., 367–370 (2007), pp. 800-805
[7] Ph. Martin, N. Chauvin, J.C. Garnier, M. Masson, Ph. Brossard, P. Anzieu, in: Proceedings of the 7th International Conference GLOBAL 2005, organised by the Atomic Energy Society of Japan (AESJ), Tsukuba, Ibarakiken, Japan, Paper 327
[8] Matériaux pour le réacteur à très haute température, Les Réacteurs Nucléaires à Caloporteur Gaz, Monographie de la Direction de l'énergie nucléaire, CEA, Editions Le Moniteur, pp. 33–44 and 45–48
[9] J. Nucl. Mater., 155–157 (1988), pp. 105-112
[10] Matériaux pour le réacteur à très haute température, Les Réacteurs Nucléaires à Caloporteur Gaz, Monographie de la Direction de l'énergie nucléaire, CEA, Editions Le Moniteur, pp. 77–83
[11] C. R. Physique, 9 (2008) no. 3–4, pp. 303-322
[12] C. R. Physique, 9 (2008) no. 3–4, pp. 389-400
[13] J. Nucl. Mater., 179–181 (1991), pp. 105-110
[14] et al. Helium and point defect accumulation: (ii) kinetic modelling, C. R. Physique, Volume 9 (2008) no. 3–4, pp. 401-408
[15] J. Physique IV, 11 (2001) no. Pr1, pp. 187-201
[16] J. Nucl. Mater., 212–215 (1994), pp. 588-593
[17] Fusion Eng. Design, 75–79 (2005), pp. 989-996
[18] Fusion Eng. Design, 329–333 (2004), pp. 257-262
[19] The Structures of Alloys of Iron: An Elementary Introduction, Pergamon Press, 1966
[20] J. Nucl. Mater., 233–237 (1996), pp. 263-269
[21] M. Rieth, private communication
[22] The long term structural stability of power generation steels – some basic considerations, San Sebastian, Spain, April 27–29, 1998 (1998)
[23] New developments in steels for power generation boilers, San Sebastian, Spain, April 27–29, 1998 (1998)
[24] J. Mater. Technol., 64 (1997), pp. 53-64
[25] J. Nucl. Mater., 341 (2005), pp. 103-114
[26] R. Lindau, A. Alamo, Private communication
[27] Rev. Métall., 65 (1968), p. 12
[28] J. Nucl. Sci. Technol., 34 (1997), p. 256
[29] J. Nucl. Sci. Technol., 36 (1999), p. 710
[30] J. Nucl. Mater., 367–370 (2007), pp. 173-178
[31] J. Nucl. Mater., 329–333 (2004), pp. 333-337
[32] J. Nucl. Mater., 258–263 (1998), p. 209
[33] Mater. Sci. Eng. A, 353 (2003), p. 140
[34] J. Nucl. Mater., 351 (2006), pp. 262-268
[35] Scripta Mater., 49 (2003), pp. 921-925
[36] Phys. Rev. B, 52 (1995) no. 3, pp. 4006-4016
[37] J. Nucl. Mater., 329–333 (2004), pp. 338-341
[38] Oxid. Met., 32 (1989) no. 5–6, p. 337
[39] Trans. Met. Soc. AIME, 239 (1967), p. 426
[40] J. Nucl. Mater., 329–333 (2004), pp. 382-386
[41] J. Nucl. Mater., 367–370 (2007), pp. 166-172
[42] J. Nucl. Mater., 329–333 (2004), pp. 347-351
[43] P. Vladimirov, A. Moeslang, R. Lindau, M. Klimenkov, C. Eiselt, R. Coppola, A.A. Aleev, A.V. Karpov, O.N. Makeev, S.V. Rogozhkin, A.G. Zaluzhnyi, Workshop on Structural Materials for Innovative Nuclear Systems (SMINS), FZ-Karlsruhe June 4–6, 2007
[44] J. Nucl. Mater., 367–370 (2007), pp. 213-216
[45] A. Alamo, A. Bougault, Contribution to the Fusion EURATOM programme TW5-TTMS006, Private communication
[46] Reutte, Austria, May 30–June 3, 2005, Plansee AG, Reutte (2005), pp. 545-5557
[47] J. Nucl. Mater., 367–370 (2007), pp. 208-212
[48] IFMIF: the intense neutron source to qualify materials for fusion reactors, C. R. Physique, Volume 9 (2008) no. 3–4, pp. 457-468
[49] Modelling of long term kinetic evolution: a fruitful relationship between experiment and theoretical development, C. R. Physique, Volume 9 (2008) no. 3–4, pp. 353-361
[50] Radiation effects in concentrated alloys and compounds: equilibrium and kinetics of driven systems, C. R. Physique, Volume 9 (2008) no. 3–4, pp. 323-334
[51] J. Nucl. Mater., 307–311 (2002), pp. 212-216
[52] J. Nucl. Mater., 283–287 (2000), pp. 339-343
[53] J. Nucl. Mater., 343 (2005), pp. 247-252
[54] J. Nucl. Mater., 318 (2003), pp. 249-259
[55] J. Nucl. Mater., 318 (2003), pp. 241-248
[56] Atomic modeling of irradiation-induced hardening, C. R. Physique, Volume 9 (2008) no. 3–4, pp. 418-426
[57] J. Nucl. Mater., 367–370 (2007), pp. 54-59
[58] J. Nucl. Mater., 312 (2003), pp. 236-248
[59] et al. The Fe–Cr system: atomistic modeling of thermodynamics and kinetics of phase transformations, C. R. Physique, Volume 9 (2008) no. 3–4, pp. 379-388
[60] J. Nucl. Mater., 356 ( 15 September 2006 ) no. 1–3, pp. 27-49
[61] A. Alamo, P. Wident, V. Shamardin, Final Report TW2-TTMS-001-D02: CEA REPORT DMN/SRMA/NT/2006-2767/A
[62] J. Nucl. Mater., 336 (2004), pp. 311-321
[63] J. Nucl. Mater., 360 (2007), pp. 136-141
[64] J. Nucl. Mater., 258–263 (1998), pp. 7-17
[65] Introduction to Solid States Physics, John Wiley and Sons, Inc., New York, 1966
[66] J. Nucl. Mater., 329–333 (2004), pp. 524-529
[67] Scripta Mater., 43 (2000) no. 9, pp. 865-870
[68] J. Nucl. Mater., 307–311 (2002), pp. 1057-1072
[69] See for instance in Current Opinion in Solid State and Materials Science 3 (1998): (a) E. Kaxiras, S. Yip, Modelling and simulation of solids 523–525. (b) R. Phillips, Modelling in the mechanics of materials 526–532. (c) G. Martin, Modelling materials driven far from equilibrium 552–557
[70] (b) P. Ledermann, J.L. Boutard, M. Guttmann, B. Marini P. Garcia, C. Valot, La Revue de Métallurgie-CIT Novembre, 2005, pp. 917–930
[71] J. Nucl. Mater., 371 (2007), pp. 28-36
Cited by Sources:
Comments - Policy