Comptes Rendus
Submarine networks: evolution, not revolution
[Réseaux sous-marins : évolution sans révolution]
Comptes Rendus. Physique, Volume 9 (2008) no. 9-10, pp. 1031-1044.

Nous avions montré dans le numéro de janvier–février 2003 des Comptes Rendus de Physique comment le multiplexage en longueur d'onde avait permis d'accroitre sensiblement la capacité de transmission par fibre à-travers l'océan Atlantique (de 1×5 Gbit/s en 1995 à 42×10 Gbit/s en 2001). Depuis, l'éclatement de la bulle internet a ralenti l'accroissement de capacité mais récemment le besoin de grandes liaisons à-travers l'océan Pacifique a permis l'industrialisation de nouvelles technologies telle que la transmission à modulation de phase différentielle. Ce format de modulation permet également d'augmenter la capacité des fibres déjà déployées au-delà de leurs capacités maximales initiales. Nous discuterons également rapidement la possibilité de transmettre des canaux modulés à 40 Gb/s sur des liens sous-marins.

We have described in a previous issue of the Comptes Rendus Physique of January–February 2003 how the wavelength division multiplexing technique enabled us to increase drastically the transmission capacity per fiber over trans-Atlantic distances (from 1×5 Gbit/s in 1995 up to 42×10 Gbit/s in 2001). Then, the crash of the internet bubble reduced the need for higher capacity, but, recently, the demand in trans-Pacific links has lead to the deployment of new technologies such as the differential phase shift keying modulation format. This new modulation format also enables the upgrading of existing links beyond their design capacities. We illustrate the benefit of this new modulation format and also discuss the capabilities to increase the bit rate from 10 Gb/s to 40 Gb/s per wavelength.

Publié le :
DOI : 10.1016/j.crhy.2008.10.011
Keywords: Wavelength division multiplexing, High bit rate modulation, Dispersion-slope-matched fiber, Erbium doped fiber amplifier, Chromatic dispersion, Differential phase shift keying, Forward error correction codes
Mot clés : Multiplexage en longueur d'onde, Modulation haut débit, Fibre à pente de dispersion compensée, Amplificateur optique à fibre dopé à l'erbium, Dispersion chromatique, Modulation de phase différentielle, Codes correcteur d'erreur
Olivier Gautheron 1

1 Alcatel-Lucent, Submarine Networks Division, 91625 Nozay, France
@article{CRPHYS_2008__9_9-10_1031_0,
     author = {Olivier Gautheron},
     title = {Submarine networks: evolution, not revolution},
     journal = {Comptes Rendus. Physique},
     pages = {1031--1044},
     publisher = {Elsevier},
     volume = {9},
     number = {9-10},
     year = {2008},
     doi = {10.1016/j.crhy.2008.10.011},
     language = {en},
}
TY  - JOUR
AU  - Olivier Gautheron
TI  - Submarine networks: evolution, not revolution
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 1031
EP  - 1044
VL  - 9
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.10.011
LA  - en
ID  - CRPHYS_2008__9_9-10_1031_0
ER  - 
%0 Journal Article
%A Olivier Gautheron
%T Submarine networks: evolution, not revolution
%J Comptes Rendus. Physique
%D 2008
%P 1031-1044
%V 9
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2008.10.011
%G en
%F CRPHYS_2008__9_9-10_1031_0
Olivier Gautheron. Submarine networks: evolution, not revolution. Comptes Rendus. Physique, Volume 9 (2008) no. 9-10, pp. 1031-1044. doi : 10.1016/j.crhy.2008.10.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.011/

[1] O. Gautheron; M. Suyama Submarine cable networks, C. R. Physique, Volume 4 (2003) no. 1, pp. 115-126

[2] M. Murakami, T. Matsuda, T. Imai, in: Proc. European Conference on Optical Communications, ECOC'98, Madrid, Spain, 1998, pp. 79–81

[3] A.H. Gnauck; P.J. Winzer Optical phase shift keyed transmission, Journal of Lightwave Technology, Volume 23 ( January 2005 ) no. 1, pp. 115-129

[4] P.A. Humblet; M. Azizoglu On the bit error rate of lightwave systems with optical amplifiers, Journal of Lightwave Technology, Volume 9 (1991)

[5] Undersea Fiber Communication Systems (J. Chesnoy, ed.), Academic Press, 2002

[6] O. Aït Sab, FEC evolution in submarine transmission systems, in: SubOptic Conference 2004, Monaco, paper We 10.1

[7] S. Dupont, et al., 70×10 Gbps (mixed RZ-OOK and RZ-DPSK) upgrade of a 7224 km conventional 32×10 Gbps designed system, in: European Conference on Optical Communications, ECOC'07, paper Mo.2.3.5

[8] P. Plantady, et al., DPSK Transmission experiments over DSMF and NZDSF DPSK transmission experiments over DSMF and NZDSF, in: Sub'Optic Conference 2007, Baltimore, paper ThB17

[9] L. Du Mouza, et al., 124×10 Gbits/s RZ-DPSK transmission over 12 380 km without channelized chromatic dispersion management, in: Proceedings of Optical Fiber Communication Conference OFC'07, paper OThS3

[10] W.T. Anderson, et al., Modeling RZ-DPSK transmission – simulations and measurements for an installed submarine system, in: Proceedings of Optical Fiber Communication Conference OFC'05, paper OThC1

[11] G. Charlet, et al., Alternate-polarisation RZ-DPSK transmission at 40×42.7 Gbit/s over transpacific distance with large Q-factor margin, in: European Conference on Optical Communications, ECOC'04, post-dead-line paper

[12] X. Liu et al. Performance analysis of time-polarisation multiplexed 40 Gb/s RZ-DPSK DWDM transmission, IEEE Photonics Technology Letters, Volume 16 ( January 2004 ) no. 1, pp. 302-304

[13] J.X. Cai, et al., 40 Gb/s transmission using polarisation division multiplexing (PDM) RZ-DBPSK with automatic polarisation tracking, in: Proceedings of Optical Fiber Communication Conference OFC'08, post-dead-line paper PDP 4

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Coherent detection associated with digital signal processing for fiber optics communication

Gabriel Charlet

C. R. Phys (2008)


Submarine cable networks

Olivier Gautheron; Masuo Suyama

C. R. Phys (2003)


Science and technology challenges in XXIst century optical communications

E. Desurvire; C. Kazmierski; F. Lelarge; ...

C. R. Phys (2011)