We have described in a previous issue of the Comptes Rendus Physique of January–February 2003 how the wavelength division multiplexing technique enabled us to increase drastically the transmission capacity per fiber over trans-Atlantic distances (from in 1995 up to in 2001). Then, the crash of the internet bubble reduced the need for higher capacity, but, recently, the demand in trans-Pacific links has lead to the deployment of new technologies such as the differential phase shift keying modulation format. This new modulation format also enables the upgrading of existing links beyond their design capacities. We illustrate the benefit of this new modulation format and also discuss the capabilities to increase the bit rate from 10 Gb/s to 40 Gb/s per wavelength.
Nous avions montré dans le numéro de janvier–février 2003 des Comptes Rendus de Physique comment le multiplexage en longueur d'onde avait permis d'accroitre sensiblement la capacité de transmission par fibre à-travers l'océan Atlantique (de en 1995 à en 2001). Depuis, l'éclatement de la bulle internet a ralenti l'accroissement de capacité mais récemment le besoin de grandes liaisons à-travers l'océan Pacifique a permis l'industrialisation de nouvelles technologies telle que la transmission à modulation de phase différentielle. Ce format de modulation permet également d'augmenter la capacité des fibres déjà déployées au-delà de leurs capacités maximales initiales. Nous discuterons également rapidement la possibilité de transmettre des canaux modulés à 40 Gb/s sur des liens sous-marins.
Mots-clés : Multiplexage en longueur d'onde, Modulation haut débit, Fibre à pente de dispersion compensée, Amplificateur optique à fibre dopé à l'erbium, Dispersion chromatique, Modulation de phase différentielle, Codes correcteur d'erreur
Olivier Gautheron 1
@article{CRPHYS_2008__9_9-10_1031_0, author = {Olivier Gautheron}, title = {Submarine networks: evolution, not revolution}, journal = {Comptes Rendus. Physique}, pages = {1031--1044}, publisher = {Elsevier}, volume = {9}, number = {9-10}, year = {2008}, doi = {10.1016/j.crhy.2008.10.011}, language = {en}, }
Olivier Gautheron. Submarine networks: evolution, not revolution. Comptes Rendus. Physique, Recent advances in optical telecommunications / Avancées récentes en télécommunications optiques, Volume 9 (2008) no. 9-10, pp. 1031-1044. doi : 10.1016/j.crhy.2008.10.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.011/
[1] Submarine cable networks, C. R. Physique, Volume 4 (2003) no. 1, pp. 115-126
[2] M. Murakami, T. Matsuda, T. Imai, in: Proc. European Conference on Optical Communications, ECOC'98, Madrid, Spain, 1998, pp. 79–81
[3] Optical phase shift keyed transmission, Journal of Lightwave Technology, Volume 23 ( January 2005 ) no. 1, pp. 115-129
[4] On the bit error rate of lightwave systems with optical amplifiers, Journal of Lightwave Technology, Volume 9 (1991)
[5] Undersea Fiber Communication Systems (J. Chesnoy, ed.), Academic Press, 2002
[6] O. Aït Sab, FEC evolution in submarine transmission systems, in: SubOptic Conference 2004, Monaco, paper We 10.1
[7] S. Dupont, et al., (mixed RZ-OOK and RZ-DPSK) upgrade of a 7224 km conventional designed system, in: European Conference on Optical Communications, ECOC'07, paper Mo.2.3.5
[8] P. Plantady, et al., DPSK Transmission experiments over DSMF and NZDSF DPSK transmission experiments over DSMF and NZDSF, in: Sub'Optic Conference 2007, Baltimore, paper ThB17
[9] L. Du Mouza, et al., RZ-DPSK transmission over 12 380 km without channelized chromatic dispersion management, in: Proceedings of Optical Fiber Communication Conference OFC'07, paper OThS3
[10] W.T. Anderson, et al., Modeling RZ-DPSK transmission – simulations and measurements for an installed submarine system, in: Proceedings of Optical Fiber Communication Conference OFC'05, paper OThC1
[11] G. Charlet, et al., Alternate-polarisation RZ-DPSK transmission at over transpacific distance with large Q-factor margin, in: European Conference on Optical Communications, ECOC'04, post-dead-line paper
[12] et al. Performance analysis of time-polarisation multiplexed 40 Gb/s RZ-DPSK DWDM transmission, IEEE Photonics Technology Letters, Volume 16 ( January 2004 ) no. 1, pp. 302-304
[13] J.X. Cai, et al., 40 Gb/s transmission using polarisation division multiplexing (PDM) RZ-DBPSK with automatic polarisation tracking, in: Proceedings of Optical Fiber Communication Conference OFC'08, post-dead-line paper PDP 4
Cited by Sources:
Comments - Policy