Comptes Rendus
Carbon nanotubes based transistors composed of single-walled carbon nanotubes mats as gas sensors: A review
Comptes Rendus. Physique, Volume 11 (2010) no. 5-6, pp. 389-396.

This contribution presents the main studies on the CNTFET based gas sensors obtained using Single-Walled Carbon Nanotubes mats (SWCNTs) as channel. Although these devices have allowed one to achieve sensors with an impressive sensitivity compared to existing technologies, the physical interpretation of the effect of interaction between the gas molecules and the CNTFETs has not yet been clarified. Concerning selectivity, we will deal with the main routes that have been proposed to overcome this problem: functionalization using polymers, electrodes metal diversification, metal decoration of SWCNT mats.

Parmi les détecteurs de gaz basés sur des transistors à effet de champ à nanotubes de carbone (CNTFET) ceux qui utilisent comme canal des nattes de nanotubes de carbone à paroi simple (SWCNT) sont passés en revue dans la présente étude. Bien que ces dispositifs aient permis de réaliser des détecteurs dont la sensibilité est impressionnante en comparaison avec les technologies existantes, l'interprétation physique de l'effet de l'interaction entre les molécules de gaz et les CNTFET n'a pas encore été clarifiée. En ce qui concerne la sélectivité, nous nous intéresserons aux diverses voies proposées pour surmonter ce problème : fonctionnalisation par des polymères, diversification des électrodes métalliques, décoration métallique des nattes de SWCNT.

Published online:
DOI: 10.1016/j.crhy.2010.06.002
Keywords: SWCNT, CNTFET, Nanosensors, Nanotechnology, Gas sensing
Mot clés : SWCNT, CNTFET, Nanodétecteurs, Nanotechnologie, Détection de gaz

Paolo Bondavalli 1

1 Nanocarb Laboratory, Thales Research and Technology, 91767 Palaiseau cedex, France
@article{CRPHYS_2010__11_5-6_389_0,
     author = {Paolo Bondavalli},
     title = {Carbon nanotubes based transistors composed of single-walled carbon nanotubes mats as gas sensors: {A} review},
     journal = {Comptes Rendus. Physique},
     pages = {389--396},
     publisher = {Elsevier},
     volume = {11},
     number = {5-6},
     year = {2010},
     doi = {10.1016/j.crhy.2010.06.002},
     language = {en},
}
TY  - JOUR
AU  - Paolo Bondavalli
TI  - Carbon nanotubes based transistors composed of single-walled carbon nanotubes mats as gas sensors: A review
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 389
EP  - 396
VL  - 11
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.06.002
LA  - en
ID  - CRPHYS_2010__11_5-6_389_0
ER  - 
%0 Journal Article
%A Paolo Bondavalli
%T Carbon nanotubes based transistors composed of single-walled carbon nanotubes mats as gas sensors: A review
%J Comptes Rendus. Physique
%D 2010
%P 389-396
%V 11
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2010.06.002
%G en
%F CRPHYS_2010__11_5-6_389_0
Paolo Bondavalli. Carbon nanotubes based transistors composed of single-walled carbon nanotubes mats as gas sensors: A review. Comptes Rendus. Physique, Volume 11 (2010) no. 5-6, pp. 389-396. doi : 10.1016/j.crhy.2010.06.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.06.002/

[1] S. Ijima Helical microtubules of graphitic carbon, Nature, Volume 354 (1991), pp. 56-58

[2] N. Koratkar, P. Ajayna, A. Modi, E. Lass, Miniaturized gas sensors featuring electrical breakdown in the vicinity of carbon nanotubes tips, Patent WO/2004/059298.

[3] A. Goldoni, L. Petaccia, S. Lizzit, R. Larciprete, Interaction of single-walled carbon nanotubes with gases: sample contaminants and environmental monitoring, in: 3rd Stig Lundqvist Conference on Advancing Frontiers of Condensed Matter Physics, Trieste (Italy), August 11–15, 2003.

[4] T. Ueda; H. Norimatsu; Md.M.H. Bhuiyan; T. Ikegami; K. Ebihara NO sensing property of carbon nanotube based thin film gas sensors prepared by chemical vapor deposition techniques, Jpn. J. Appl. Phys., Volume 45 (2006) no. 10B, pp. 8393-8397

[5] J. Li; Y. Lu; Q. Ye; M. Cinke; J. Han; M. Meyyappan Carbon nanotube sensors for gas and organic vapor detection, Nano Lett., Volume 3 (2003) no. 7, pp. 929-933

[6] L. Valentini; I. Armetano; J.H. Kenny; C. Cantalini; L. Lozzi; S. Santucci Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin film, Appl. Phys. Lett., Volume 82 (2003) no. 6, pp. 961-963

[7] J. Kong; N. Franklin; C. Chou; S. Pan; K.J. Cho; H. Dai Nanotube molecular wires as chemical sensors, Science, Volume 287 (2000), pp. 622-625

[8] J. Zhang; A. Boyd; A. Tselev; M. Paranjape; P. Barbara Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors, Appl. Phys. Lett., Volume 88 (2006), p. 123112

[9] N. Peng; Q. Zhang; C.L. Chow; O.K. Tan; N. Marzari Sensing mechanism for carbon nanotube based NH3 gas detection, Nano Lett., Volume 9 (2009) no. 4, pp. 1626-1630

[10] S. Kumar et al. Performance of carbon nanotube-dispersed thin-film transistors, Appl. Phys. Lett., Volume 89 (2006), p. 143501

[11] S. Kumar; J.Y. Murthy; M.A. Alam Phys. Rev. Lett., 95 (2005), p. 066802

[12] E.S. Snow; J.P. Novak; P.M. Campbell; D. Park Random networks of carbon nanotubes as an electronic material, Appl. Phys. Lett., Volume 82 (2003) no. 13, p. 2145

[13] S. Kumar; N. Pimparkar; J.Y. Murthy; A.A. Alam Theory of transfer characteristics of nanotube networks transistors, Appl. Phys. Lett., Volume 88 (2006) no. 12, p. 123505

[14] E. Berkyarova; M.E. Itkis; N. Cabrera; B. Zhao; A. Yu; J. Gao; R.C. Haddon Electronic properties of single-walled carbon nanotube networks, J. Amer. Chem. Soc., Volume 127 (2005) no. 16, pp. 5990-5995

[15] J.P. Novak; E.S. Snow; E.J. Houser; D. Park; J.L. Stepnowski; R.A. McGill Nerve agent detection using networks of single-walled carbon nanotubes, Appl. Phys. Lett., Volume 83 (2003) no. 19, pp. 4026-4029

[16] E.S. Snow; F.K. Perkins; J.A. Rbinson Chemical vapour detection using single-walled carbon nanotubes, Chem. Soc. Rev., Volume 35 (2006), pp. 790-798

[17] A.R. Hopkins; N.S. Lewis Anal. Chem., 73 (2001), pp. 884-892

[18] J. Li; Y. Lu; Q. Ye; L. Delzeit; M. Meyyappan A gas sensor array using carbon nanotubes and microfabrication technology, Electrochem. Solid-State Lett., Volume 8 (2005) no. 11, pp. H100-102

[19] L. Delzeit; B. Chen; A.M. Cassel; R. Stevens; C. Nguyen; M. Meyyappan Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth, Chem. Phys. Lett., Volume 348 (2001), pp. 368-374

[20] P. Bondavalli, P. Legagneux, D. Pribat, P. Lebarny, J. Naigle, Conductive nanotube or nanowires FET transistor network and corresponding device, for detecting analytes, Patent WO2006128828.

[21] P. Bondavalli, P. Legagneux, D. Pribat, Gas fingerprinting using carbon nanotubes, transistor array, in: Technical Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show, vol. 3, 2007, pp. 29–32.

[22] P. Bondavalli, P. Legagneux, D. Pribat, Capteurs de gaz à base de transistors à nanotubes de carbone : une nouvelle génération de capteurs manométriques, REE, no. 4, 2007.

[23] P. Bondavalli, P. Legagneux, D. Pribat, A. Balan, S. Nazeer, Gas fingerprinting using carbon nanotubes transistor arrays, J. Exp. Nanoscience, in press.

[24] Y. Morikawa; H. Ihii; K. Seki Theoretical study of n-alkane adsorption on metal surfaces, Phys. Rev. B, Volume 69 (2004) no. 23

[25] T. Mori; T. Kozawa; T. Ohwaki; Y. Taga; S. Nagai; S. Yamasaki; S. Asami; N. Shibata; M. Koike Schottky barriers and contact resistances on p-type GaN, Appl. Phys. Lett., Volume 69 (1996) no. 23, pp. 3537-3539

[26] J. Hölzl; F.K. Schulte (G. Hoehler, ed.), Springer Tracts in Modern Physics, vol. 85, Springer-Verlag, Berlin, 1977

[27] M.H. Yang; K.B.K. Teo; W.I. Milne; D.G. Hasko Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts, Appl. Phys. Lett., Volume 87 (2005) no. 25, p. 253116

[28] K. Kang Kim; D. Jae Bae; C.-M. Yang; K.H. An; J.Y. Lee; Y.H. Lee J. Nanosci. Nanotechnol., 5 (2005), pp. 1055-1059

[29] P. Bondavalli, L. Gorintin, P. Legagneux, D. Pribat, J.-P. Simonato, L. Cailler, CNTFET gas sensors using SWCNT mats: Method for low-cost fabrication, solution to improve selectivity, influence of humidity (and methods to reduce it), experimental results using interfering agents, in: Proceedings of MRS09 Fall Meeting, Boston, 30 November–3 December 2009.

[30] J. Kong; G. Michael; G. Chapline; H. Dai Functionalized carbon nanotubes for molecular sensors, Adv. Math., Volume 13 (2001) no. 18

[31] A. Starr; V. Joshi; S. Skarupo; D. Thomas; J.-C.P. Gabriel Gas sensor array based on metal-decorated carbon nanotubes, J. Phys. Chem. B, Volume 110 (2006), pp. 21014-21020

[32] D.R. Kauffmann; A. Starr Chemically induced potential barriers at carbon nanotube–metal nanoparticle interface, Nano Lett., Volume 7 (2007) no. 7, pp. 1863-1868

Cited by Sources:

Comments - Policy