Comptes Rendus
Use of large scale facilities for research in metallurgy
X-ray line profiles analysis of plastically deformed metals
[Profils de raie en rayons X sur des matériaux métalliques déformés plastiquement]
Comptes Rendus. Physique, Use of large scale facilities for research in metallurgy / Utilisation des grands instruments pour la recherche en métallurgie , Volume 13 (2012) no. 3, pp. 293-306.

Nous présentons la base théorique de lʼanalyse des profils de raie en rayons X, et son application à la caractérisation microstructurale de métaux déformés plastiquement. La microstructure est décrite en termes de taille de domaine cohérent, densité de défauts planaires, densité de dislocations et un paramètre dʼarrangement des dislocations. Nous introduisons deux méthodes dʼanalyse : la méthode des moments, et la méthode étendue dʼajustement par analyse Convolutional Multiple Whole Profile. Nous présentons des exemples dʼutilisation de ces mesures sur la déformation plastique de monocristaux, de monocristaux résidant dans le volume dʼun polycristal, et dans le cas de familles de grains constituant des composantes de texture. Les exemples sélectionnés montrent le potentiel de la technique dʼanalyse du profil de raies obtenues soit par des sources de laboratoire ou par rayonnement synchrotron.

The theoretical basis of X-ray line profile analysis and its application to microstructural characterization of plastically deformed metallic alloys is presented. The microstructure is described in terms of coherent domain size, planar fault density, dislocation density and a dislocation arrangement parameter. Two evaluation methods are introduced: the momentum method and the extended Convolutional Multiple Whole Profile fit procedure. Their use is exemplified on plastically deformed single crystals, single grains residing in the bulk of a polycrystal and family of grains making up texture components. The selected examples show the potential of X-ray line profile analysis applied to diffraction patterns recorded with laboratory or synchrotron sources.

Publié le :
DOI : 10.1016/j.crhy.2011.12.004
Keywords: Metals and alloys, X-ray diffraction, Line profile analysis, Dislocation density, Planar faults
Mots-clés : Métaux et alliages, Diffraction des rayons X, Analyse des profils de raie, Densité de dislocations, Défauts planaires

András Borbély 1 ; Tamás Ungár 2

1 SMS Materials Centre and CNRS UMR 5146, École des mines de Saint Etienne, 158, cours Fauriel, 42023 Saint Etienne, France
2 Department of Materials Physics, Eötvös University Budapest, P.O. Box 32, Budapest H-1518, Hungary
@article{CRPHYS_2012__13_3_293_0,
     author = {Andr\'as Borb\'ely and Tam\'as Ung\'ar},
     title = {\protect\emph{X}-ray line profiles analysis of plastically deformed metals},
     journal = {Comptes Rendus. Physique},
     pages = {293--306},
     publisher = {Elsevier},
     volume = {13},
     number = {3},
     year = {2012},
     doi = {10.1016/j.crhy.2011.12.004},
     language = {en},
}
TY  - JOUR
AU  - András Borbély
AU  - Tamás Ungár
TI  - X-ray line profiles analysis of plastically deformed metals
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 293
EP  - 306
VL  - 13
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.12.004
LA  - en
ID  - CRPHYS_2012__13_3_293_0
ER  - 
%0 Journal Article
%A András Borbély
%A Tamás Ungár
%T X-ray line profiles analysis of plastically deformed metals
%J Comptes Rendus. Physique
%D 2012
%P 293-306
%V 13
%N 3
%I Elsevier
%R 10.1016/j.crhy.2011.12.004
%G en
%F CRPHYS_2012__13_3_293_0
András Borbély; Tamás Ungár. X-ray line profiles analysis of plastically deformed metals. Comptes Rendus. Physique, Use of large scale facilities for research in metallurgy / 
Utilisation des grands instruments pour la recherche en métallurgie
, Volume 13 (2012) no. 3, pp. 293-306. doi : 10.1016/j.crhy.2011.12.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.12.004/

[1] H.M. Rietveld Acta Cryst., 22 (1967), pp. 151-152

[2] J.I. Langford Accuracy in Powder Diffraction (S. Block; C.R. Hubbard, eds.), NBS Special Publication, vol. 567, National Bureau of Standards, Washington DC, 1980, p. 255

[3] R.A. Young; D.B. Wiles J. Appl. Cryst., 15 (1982), pp. 430-438

[4] M. Ahtee; L. Unonius; M. Nurmela; P. Suortti J. Appl. Cryst., 17 (1984), pp. 352-357

[5] H. Toraya J. Appl. Cryst., 19 (1986), pp. 440-447

[6] J.I. Langford; R. Delhez; Th.H. de Keijser; E.J. Mittemeijer Aust. J. Phys., 41 (1988), pp. 173-187

[7] D. Balzar J. Appl. Cryst., 28 (1995), pp. 244-245

[8] D. Balzar Defect and Microstructure Analysis from Diffraction (R.L. Snyder; H.J. Bunge; J. Fiala, eds.), IUCr Monographs on Crystallography, vol. 10, Oxford University Press, New York, 1999, p. 94

[9] A.R. Stokes; A.J.C. Wilson Proc. Cambridge Philos. Soc., 38 (1942), pp. 313-322

[10] B.E. Warren; B.L. Averbach J. Appl. Phys., 21 (1950), pp. 595-597

[11] E.F. Bertaut Acta Cryst., 3 (1950), pp. 14-18

[12] M.A. Krivoglaz; K.P. Rjaboshapka Fiz. Metallov Metalloved., 15 (1963), pp. 18-31

[13] M.A. Krivoglaz Theory of X-ray and Thermal Neutron Scattering by Real Crystals, Springer-Verlag, Berlin, 1996

[14] M. Wilkens Phys. Stat. Sol. (a), 2 (1970), pp. 359-370

[15] M. Wilkens, in: J.A. Simmons, R. de Wit, R. Bullough (Eds.), Fundamental Aspects of Dislocation Theory, vol. II, Spec. Publ. No. 317, Nat. Bur. Stand. (US), Washington, DC, USA, 1970, p. 1195.

[16] I. Gaál Proc. 5th Riso Int. Symp. Met. Mat. Sci. (N.H. Andersen et al., eds.), Risø Nat. Lab., Roskilde, Denmark, 1984, pp. 245-254

[17] I. Groma; T. Ungár; M. Wilkens J. Appl. Cryst., 21 (1989), pp. 47-53

[18] T. Ungár; I. Groma; M. Wilkens J. Appl. Cryst., 22 (1989), pp. 26-34

[19] I. Groma Phys. Rev. B, 57 (1998), pp. 7535-7542

[20] A. Borbély; I. Groma Appl. Phys. Lett., 79 (2001), pp. 1772-1774

[21] L. Velterop; R. Delhez; Th.H. de Keijser; E.J. Mittemeijera; D. Reefman J. Appl. Cryst., 33 (2000), pp. 296-306

[22] E. Estevez-Rams; A. Penton-Madrigal; R. Lora-Serrano; J. Martinez-Garcia J. Appl. Cryst., 34 (2001), pp. 730-736

[23] P. Scardi; M. Leoni Acta Cryst. A, 58 (2002), pp. 190-200

[24] E. Estevez-Rams; M. Leoni; P. Scardi; B. Aragon-Fernandez; H. Fuess Phil. Mag. A, 83 (2003), pp. 4045-4057

[25] M.M.J. Treacy; J.M. Newsam; M.W. Deem Proc. Roy. Soc. London A, 433 (1991), pp. 499-520

[26] T. Ungár; I. Dragomir; Á. Révész; A. Borbély J. Appl. Cryst., 32 (1999), pp. 992-1002

[27] T. Ungár; J. Gubicza; G. Ribárik; A. Borbély J. Appl. Cryst., 34 (2001), pp. 298-310

[28] L. Balogh; G. Ribárik; T. Ungár J. Appl. Phys., 100 (2006), p. 023512

[29] L. Balogh; G. Tichy; T. Ungár J. Appl. Cryst., 42 (2009), pp. 580-591

[30] G. Ribárik; T. Ungár; J. Gubicza J. Appl. Cryst., 34 (2001), pp. 669-676

[31] T. Ungár; H. Mughrabi; M. Wilkens Acta Metall., 30 (1982), pp. 1861-1867

[32] T. Ungár; H. Mughrabi; D. Rönnpagel; M. Wilkens Acta Metall., 32 (1984), pp. 333-342

[33] E. Schafler; K. Simon; S. Bernstorff; P. Hanák; G. Tichy; T. Ungár; M.J. Zehetbauer Acta Mater., 53 (2005), pp. 315-322

[34] P. Cordier; T. Ungár; L. Zsoldos; G. Tichy Nature, 428 (2004), pp. 837-840

[35] T. Ungár; G. Ribárik; L. Balogh; A.A. Salem; S.L. Semiatin; G. Vaughan Scripta Mater., 63 (2010), pp. 69-72

[36] P. Scardi; M. Leoni Diffraction Analysis of the Microstructure of Materials (E.J. Mittemeijer; P. Scardi, eds.), Springer Ser. Mater. Sci, vol. 68, Springer-Verlag, Berlin, 2004, p. 51

[37] G. Ribárik; J. Gubicza; T. Ungár Mater. Sci. Eng. A, 387–389 (2004), pp. 343-347 http://www.renyi.hu/cmwp (a free software can be found at the homepage:)

[38] P. Scardi; M. Leoni Acta Mater., 53 (2005), pp. 5229-5239

[39] R.W. James The Optical Principles of the Diffraction of X-Rays, G. Bell and Sons, Ltd., London, 1965

[40] P. Scardi; M. Leoni; R.J. Delhez J. Appl. Cryst., 37 (2004), pp. 381-390

[41] J.I. Langford; D. Louër Rep. Progr. Phys., 59 (1996), pp. 131-234

[42] Ch.D. Terwilliger; Y.M. Chiang Acta Metall. Mater., 43 (1995), pp. 319-328

[43] C.E. Krill; R. Birringer Phil. Mag. A, 77 (1998), pp. 621-640

[44] M. Leoni; P. Scardi J. Appl. Cryst., 37 (2004), pp. 629-634

[45] A.J.C. Wilson X-ray Optics, Methuen, London, 1962

[46] A.J.C. Wilson Proc. Phys. Soc., 80 (1962), p. 286

[47] A.J.C. Wilson Proc. Phys. Soc., 81 (1963), p. 41

[48] J.I. Langford; A.J.C. Wilson J. Appl. Cryst., 11 (1978), pp. 102-113

[49] J.I. Langford; D. Louër; P. Scardi J. Appl. Cryst., 33 (2000), pp. 964-974

[50] N.C. Popa; D. Balzar J. Appl. Cryst., 35 (2002), pp. 338-346

[51] B. Clausen; C.N. Tome; D.W. Brown; S.R. Agnew Acta Mater., 56 (2008), pp. 2456-2468

[52] L. Wu; S.R. Agnew; D.W. Brown; G.M. Stoica; B. Clausen; A. Jain; D.E. Fielden; P.K. Liaw Acta Mater., 56 (2008), pp. 3699-3707

[53] W. Massa; S. Wocadlo; S. Lotz; K.Z. Dehnicke Anorg. Allg. Chem., 589 (1990), pp. 79-88

[54] http://metal.elte.hu/~evente/stacking

[55] B.E. Warren X-Ray Diffraction, Dover Publications, New York, 1990

[56] B.E. Warren; B.L. Averbach J. Appl. Phys., 23 (1952), pp. 497-498

[57] V.M. Kaganer; R. Köhler; M. Schmidbauer; R. Opitz; B. Jenichen Phys. Rev. B, 55 (1997), pp. 1793-1810

[58] M. Wilkens; K. Hertz; H. Mughrabi Z. Metallk., 71 (1980), p. 376

[59] F. Székely; I. Groma; J. Lendvai Phys. Rev. B, 62 (2000), pp. 3093-3098

[60] F. Székely; I. Groma; J. Lendvai Mat. Sci. Eng. A, 309 (2001), pp. 352-355

[61] F. Székely; I. Groma; J. Lendvai Scripta Mater., 45 (2001), pp. 55-60

[62] I. Groma; G. Monnet J. Appl. Cryst., 35 (2002), pp. 589-593

[63] H. Mughrabi; T. Ungár; W. Kienle; M. Wilkens Phil. Mag. A, 53 (1986), pp. 793-813

[64] B. Jakobsen; H.F. Poulsen; U. Lienert; W. Pantleon Acta Mater., 55 (2007), pp. 3421-3430

[65] R. Barabash Mat. Sci. Eng. A, 309–310 (2001), pp. 49-54

[66] A. Borbély; C. Maurice; J.H. Driver J. Appl. Cryst., 41 (2008), pp. 747-753

[67] A. Borbély; A. Révész; I. Groma Z. Kristallogr. Suppl., 23 (2006), pp. 87-92

[68] A. Borbély; J. Dragomir; G. Ribarik; T. Ungár J. Appl. Cryst., 36 (2003), pp. 160-162 http://metal.elte.hu/anizc (a free computer program is available at:)

[69] N.C. Popa J. Appl. Cryst., 31 (1998), pp. 176-180

[70] T. Ungár; G. Tichy Phys. Stat. Sol. A, 147 (1999), pp. 425-434

[71] K. Máthis; K. Nyilas; A. Axt; I.D. Cernatescu; T. Ungár; P. Lukáč Acta Mater., 52 (2004), pp. 2889-2894

[72] K. Máthis; F. Chmelík; Z. Trojanová; P. Lukáč; J. Lendvai Mat. Sci. Eng. A, 387–389 (2004), pp. 331-335

[73] T. Ungár J. Powder Diffr., 23 (2008), pp. 125-132

[74] I.P. Jones; W.B. Hutchinson Acta Metall., 29 (1981), pp. 951-968

[75] P.G. Partridge Metallurg. Rev., 118 (1968), pp. 169-193

[76] M.P. Miller; J.S. Park; P.R. Dawson; T.S. Han Acta Mater., 56 (2008), pp. 3927-3939

[77] S. Merkel; C.N. Tomé; H.R. Wenk Phys. Rev. B, 79 (2009), p. 064110

[78] R.A. Lebensohn; C.N. Tome; P. Castaneda Proc. Phil. Mag., 87 (2007), pp. 4287-4322

[79] E.M. Lauridsen; S. Schmidt; R.M. Suter; H.F. Poulsen J. Appl. Cryst., 34 (2001), pp. 744-750

[80] D. Juul Jensen; E.M. Lauridsen; L. Margulies; H.F. Poulsen; S. Schmidt; H.O. Sørensen; G.B.M. Vaughan Mater. Today, 9 (2006), pp. 18-25

[81] X. Fu; H.F. Poulsen; S. Schmidt; S.F. Nielsen; E.M. Lauridsen; D. Juul Jensen Scripta Mater., 49 (2003), pp. 1093-1096

[82] J. Wright ImageD11 http://sourceforge.net/projects/fable/files/ImageD11/

[83] T. Ungár; A. Borbély Appl. Phys. Lett., 69 (1996), pp. 3173-3175

[84] A. Borbély; J.H. Driver; T. Ungár Acta Mater., 48 (2000), pp. 2005-2016

[85] A. Borbély; G. Guiglionda; J.H. Driver Z. Metallk., 93 (2002), pp. 689-693

[86] G. Guiglionda; A. Borbély; J.H. Driver Acta Mater., 52 (2004), pp. 3413-3423

  • F. Lin; V. I. Levitas; S. Yesudhas; A. Dhar; J. Smith Severe Strain‐Induced Olivine‐Ringwoodite Transformation at Room Temperature: Key to Enigmas of Deep‐Focus Earthquake, Geophysical Research Letters, Volume 52 (2025) no. 6 | DOI:10.1029/2024gl111281
  • Claire Navarre; Shieren Sumarli; Florencia Malamud; Efthymios Polatidis; Markus Strobl; Roland E. Logé In-situ neutron diffraction revealing microstructure changes during laser powder bed fusion and in-situ laser heat treatments of 316L and 316L-Al1, Materials Design, Volume 251 (2025), p. 113727 | DOI:10.1016/j.matdes.2025.113727
  • Mitsuharu Yonemura; Satoshi Sugano; Itsuki Yamaguchi; Hidenori Toyokawa; Hiroyuki Saito High-Energy X-ray Dynamics of the Recovery and Recrystallization Behaviors of Steels Subjected to Uniaxial Hot Compression and Isothermal Annealing, Metallurgical and Materials Transactions A, Volume 56 (2025) no. 4, p. 1193 | DOI:10.1007/s11661-025-07702-x
  • Albert Zelenika; Adam André William Cretton; Felix Frankus; Sina Borgi; Flemming B. Grumsen; Can Yildirim; Carsten Detlefs; Grethe Winther; Henning Friis Poulsen Observing formation and evolution of dislocation cells during plastic deformation, Scientific Reports, Volume 15 (2025) no. 1 | DOI:10.1038/s41598-025-88262-3
  • Ahmed SJ Al-Zubaydi; Nong Gao; Jan Džugan; Pavel Podaný; Ying Chen; Philippa AS Reed Fracture behaviour assessment of the additively manufactured and HPT-processed Al–Si–Cu alloy, Materials Science and Technology (2024) | DOI:10.1177/02670836241262477
  • Anil Babu Sankuru; Virendra Ahirwar; B Ravisankar; SP Kumaresh Babu Mechanical and wear behavior of room-temperature ECAPed Mg-4Li alloy, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Volume 238 (2024) no. 6, p. 2120 | DOI:10.1177/09544062231190787
  • Z. Fan; Z. Song; D. Xiao; G. Ribárik; T. Ungár Influence of Deformation Temperature On Flow Stress and Dislocation Structure of 2A12 Aluminum Alloy Under Quasi-Static and Dynamic Compression, Experimental Mechanics, Volume 63 (2023) no. 4, p. 703 | DOI:10.1007/s11340-023-00950-1
  • Zhen Zhang; Nan Wang; Jing Li; Yongnan Chen; Gang Wu; Xi Chen; Qinyang Zhao; Jinheng Luo Investigation on strain localization and hardening of dual-phase steel by hetero-deformation induced stress, Journal of Materials Research and Technology, Volume 25 (2023), p. 1832 | DOI:10.1016/j.jmrt.2023.06.057
  • Xinyu Zhang; Yongfeng Liang; Feng Yi; Han Liu; Qingjun Zhou; Zhenyu Yan; Junpin Lin Anisotropy in microstructure and mechanical properties of additively manufactured Ni-based GH4099 alloy, Journal of Materials Research and Technology, Volume 26 (2023), p. 6552 | DOI:10.1016/j.jmrt.2023.09.038
  • Xuefan Zhou; Dongling Li; Qingqing Zhou; Fan Jiang; Yan Song; Wanying Liang; Mingbo Liu; Xuejing Shen; Haizhou Wang Quantitative Characterization of Elemental Segregation in Inconel 718 Superalloy by Micro-Beam X-ray Fluorescence Spectroscopy and Its Correlation Study, Materials, Volume 16 (2023) no. 22, p. 7163 | DOI:10.3390/ma16227163
  • Niels H. van Dijk Synchrotron X-ray Radiation Studies on Metals and Alloys, Encyclopedia of Materials: Metals and Alloys (2022), p. 682 | DOI:10.1016/b978-0-12-819726-4.00051-x
  • Debojyoti Nath; Ratan Das Assessing the dislocation density in CdSe nanocrystals from XRD peak profile analysis (XDPPA) assisted by first principles method, Physica E: Low-dimensional Systems and Nanostructures, Volume 144 (2022), p. 115376 | DOI:10.1016/j.physe.2022.115376
  • Aruna Devi; S. Neogy; S.K. Sharma; R. Menon; R. Tewari Characterization of argon ion irradiation induced changes in microstructure and mechanical property of binary Zr−2.9 wt | DOI:10.1016/j.radphyschem.2021.109802
  • András Borbély The modified Williamson-Hall plot and dislocation density evaluation from diffraction peaks, Scripta Materialia, Volume 217 (2022), p. 114768 | DOI:10.1016/j.scriptamat.2022.114768
  • S Gowthaman; T Jagadeesha; V Dhinakaran Experimental investigation on elastic constants transformation on slot milled Nimonic263 alloy, Sādhanā, Volume 47 (2022) no. 3 | DOI:10.1007/s12046-022-01922-2
  • S Gowthaman; T Jagadeesha Effect of severe plastic deformation during slot milling on wear resistance and surface characteristics of nimonic 263 alloy, Engineering Research Express, Volume 3 (2021) no. 3, p. 035006 | DOI:10.1088/2631-8695/ac0fc1
  • Han Chen; Zhe Chen; Gang Ji; Shengyi Zhong; Haowei Wang; András Borbély; Yubin Ke; Yves Bréchet Experimental and modelling assessment of ductility in a precipitation hardening AlMgScZr alloy, International Journal of Plasticity, Volume 139 (2021), p. 102971 | DOI:10.1016/j.ijplas.2021.102971
  • A. Drexler; C. Bergmann; G. Manke; V. Kokotin; K. Mraczek; S. Leitner; M. Pohl; W. Ecker Local hydrogen accumulation after cold forming and heat treatment in punched advanced high strength steel sheets, Journal of Alloys and Compounds, Volume 856 (2021), p. 158226 | DOI:10.1016/j.jallcom.2020.158226
  • Ashok Bhakar; Pooja Gupta; P. N. Rao; M. K. Swami; Pragya Tiwari; Tapas Ganguli; S. K. Rai Line profile analysis of synchrotron X-ray diffraction data of iron powder with bimodal microstructural profile parameters, Journal of Applied Crystallography, Volume 54 (2021) no. 2, p. 498 | DOI:10.1107/s1600576721000601
  • Maxime Dumas; Guillaume Kermouche; Frédéric Valiorgue; Alexis Van Robaeys; Fabien Lefebvre; Alexandre Brosse; Habib Karaouni; Joel Rech Turning-induced surface integrity for a fillet radius in a 316L austenitic stainless steel, Journal of Manufacturing Processes, Volume 68 (2021), p. 222 | DOI:10.1016/j.jmapro.2021.05.031
  • Anil Babu Sankuru; Hariram M; Kondaiah Gudimetla; Ravisankar B.; Kumaresh Babu S.P. Optimization of processing temperature and back pressure of equal channel angular pressing for achieving crack-free fine grained magnesium, Materials Today: Proceedings, Volume 47 (2021), p. 4611 | DOI:10.1016/j.matpr.2021.05.463
  • Itsuki Yamaguchi; Mitsuharu Yonemura Recovery and Recrystallization Behaviors of Ni–30 Mass Pct Fe Alloy During Uniaxial Cold and Hot Compression, Metallurgical and Materials Transactions A, Volume 52 (2021) no. 8, p. 3517 | DOI:10.1007/s11661-021-06323-4
  • Anil Babu Sankuru; Hareesh Sunkara; Subash Sethuraman; Kondaiah Gudimetla; B. Ravisankar; S. P. Kumaresh Babu Effect of processing route on microstructure, mechanical and dry sliding wear behavior of commercially pure magnesium processed by ECAP with back pressure, Transactions of the Indian Institute of Metals, Volume 74 (2021) no. 11, p. 2659 | DOI:10.1007/s12666-021-02340-4
  • N. Naveen Kumar; K.V. Mani Krishna; Sagar Chandra; R. Tewari Influence of dislocations and grain boundaries on diffraction line profiles of nano-crystalline materials: A numerical study, Computational Materials Science, Volume 171 (2020), p. 109213 | DOI:10.1016/j.commatsci.2019.109213
  • Darshan Bamney; Aaron Tallman; Laurent Capolungo; Douglas E. Spearot Virtual diffraction analysis of dislocations and dislocation networks in discrete dislocation dynamics simulations, Computational Materials Science, Volume 174 (2020), p. 109473 | DOI:10.1016/j.commatsci.2019.109473
  • Jianping Sun; Ting Li; Xu Li; Jiang Pan; Xiaopeng Hao; Tianmeng Zhu Investigation of the thermal stability of PtO2 and dislocations in Pt wire, Journal of Alloys and Compounds, Volume 831 (2020), p. 154871 | DOI:10.1016/j.jallcom.2020.154871
  • Xu Li; Tianjia Bu; Yi Zhang; Tianmeng Zhu; Bowen Huang; Jianping Sun; Yongfeng Geng; Yanlin Jia Effect of annealing on microstructure and properties of Pt wires used for standard Pt resistance thermometer, Materials Characterization, Volume 165 (2020), p. 110388 | DOI:10.1016/j.matchar.2020.110388
  • Surinder M. Sharma; Stefan J. Turneaure; J. M. Winey; P. A. Rigg; N. Sinclair; Xiaoming Wang; Y. Toyoda; Y. M. Gupta Real-Time Observation of Stacking Faults in Gold Shock Compressed to 150 GPa, Physical Review X, Volume 10 (2020) no. 1 | DOI:10.1103/physrevx.10.011010
  • S Gowthaman; T Jagadeesha Effect of variation in behavioural changes during end milling on Nimonic 263 elastic constants, Materials Research Express, Volume 6 (2019) no. 12, p. 126504 | DOI:10.1088/2053-1591/ab5345
  • S Gowthaman; T Jagadeesha An experimental investigation on the effect of radial rake angle and machining conditions during end milling on wear resistance and residual stress of nimonic 263 alloy, Materials Research Express, Volume 6 (2019) no. 12, p. 126568 | DOI:10.1088/2053-1591/ab5825
  • K. G. V. Siva Kumar; Ramkumar Oruganti; Partha Chatterjee X-Ray Rocking Curve Measurements of Dislocation Density and Creep Strain Evolution in Gamma Prime-Strengthened Ni-Base Superalloys, Metallurgical and Materials Transactions A, Volume 50 (2019) no. 1, p. 191 | DOI:10.1007/s11661-018-4971-y
  • Ryan Cottam; Suresh Palanisamy; Maxim Avdeev; Tom Jarvis; Chad Henry; Dominic Cuiuri; Levente Balogh; Rizwan Abdul Rahman Rashid Diffraction Line Profile Analysis of 3D Wedge Samples of Ti-6Al-4V Fabricated Using Four Different Additive Manufacturing Processes, Metals, Volume 9 (2019) no. 1, p. 60 | DOI:10.3390/met9010060
  • Aruna Devi; A. P. Srivastava; R. Menon; K. V. Mani Krishna; S. Neogy; G. Kumar; P. Y. Nabhiraj; D. Srivastava; G. K. Dey Study on the effect of Ar9+ ion irradiation of Zr–2.5 wt. | DOI:10.1080/14786435.2018.1543963
  • Hao Yuan; Zhe Chen; Thomas Buslaps; Veijo Honkimäki; András Borbély Combined texture and microstructure analysis of deformed crystals by high-energy X-ray diffraction, Journal of Applied Crystallography, Volume 51 (2018) no. 3, p. 883 | DOI:10.1107/s1600576718006374
  • Henry Proudhon; Nicolas Guéninchault; Samuel Forest; Wolfgang Ludwig Incipient Bulk Polycrystal Plasticity Observed by Synchrotron In-Situ Topotomography, Materials, Volume 11 (2018) no. 10, p. 2018 | DOI:10.3390/ma11102018
  • M Nagaraj; B Ravisankar Investigation on ECAPed structural steel IS2062 and evaluation of strengthening mechanisms, Materials Research Express, Volume 6 (2018) no. 3, p. 036504 | DOI:10.1088/2053-1591/aaf2fb
  • Murugan Nagaraj; B. Ravisankar Enhancing the strength of structural steel through severe plastic deformation based thermomechanical treatment, Materials Science and Engineering: A, Volume 738 (2018), p. 420 | DOI:10.1016/j.msea.2018.09.095
  • Z. Chen; G.A. Sun; Y. Wu; M.H. Mathon; A. Borbely; D. Chen; G. Ji; M.L. Wang; S.Y. Zhong; H.W. Wang Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites, Materials Design, Volume 116 (2017), p. 577 | DOI:10.1016/j.matdes.2016.12.070
  • M. Nagaraj; B. Ravisankar WITHDRAWN: Investigation on microstructural properties of severe plastic deformed structural steel and evaluation of strengthening mechanisms, Materials Today Communications (2017) | DOI:10.1016/j.mtcomm.2017.12.006
  • Akira Taniyama; Toru Takayama; Masahiro Arai; Takanari Hamada Deformation Behavior of Cementite in Deformed High Carbon Steel Observed by X-ray Diffraction with Synchrotron Radiation, Metallurgical and Materials Transactions A, Volume 48 (2017) no. 10, p. 4821 | DOI:10.1007/s11661-017-4229-0
  • Vishtasb Soleimanian; Mohsen Ghasemi Varnamkhasti Influence of Oxygen Partial Pressure on Opto-Electrical Properties, Crystallite Size and Dislocation Density of Sn Doped In 2 2 O 3 3 Nanostructures, Journal of Electronic Materials, Volume 45 (2016) no. 10, p. 5395 | DOI:10.1007/s11664-016-4697-9
  • T.H. Simm; P.J. Withers; J. Quinta da Fonseca An evaluation of diffraction peak profile analysis (DPPA) methods to study plastically deformed metals, Materials Design, Volume 111 (2016), p. 331 | DOI:10.1016/j.matdes.2016.08.091
  • A. Harte; T. Seymour; E.M. Francis; P. Frankel; S.P. Thompson; D. Jädernäs; J. Romero; L. Hallstadius; M. Preuss Advances in synchrotron x-ray diffraction and transmission electron microscopy techniques for the investigation of microstructure evolution in proton- and neutron-irradiated zirconium alloys, Journal of Materials Research, Volume 30 (2015) no. 9, p. 1349 | DOI:10.1557/jmr.2015.65
  • Yanzhi Zhang; Xinjian Zhang; Xianglin Chen; Guan Weijun; Xiaolin Wang Effect of grain size on phase stability of monoclinic U–Nb alloy during low-temperature aging, Journal of Nuclear Materials, Volume 465 (2015), p. 167 | DOI:10.1016/j.jnucmat.2015.05.020
  • V. Soleimanian; S.R. Aghdaee X-ray diffraction analysis of the effect of annealing temperature on the microstructure of magnesium oxide nanopowder, Journal of Physics and Chemistry of Solids, Volume 81 (2015), p. 1 | DOI:10.1016/j.jpcs.2014.12.020
  • Z. Chen; J. Li; A. Borbely; G. Ji; S.Y. Zhong; Y. Wu; M.L. Wang; H.W. Wang The effects of nanosized particles on microstructural evolution of an in-situ TiB2/6063Al composite produced by friction stir processing, Materials Design, Volume 88 (2015), p. 999 | DOI:10.1016/j.matdes.2015.09.127
  • Y. Tang; Z. Chen; A. Borbély; G. Ji; S.Y. Zhong; D. Schryvers; V. Ji; H.W. Wang Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy, Materials Characterization, Volume 102 (2015), p. 131 | DOI:10.1016/j.matchar.2015.03.003
  • A. Wauthier-Monnin; T. Chauveau; O. Castelnau; H. Réglé; B. Bacroix The evolution with strain of the stored energy in different texture components of cold-rolled IF steel revealed by high resolution X-ray diffraction, Materials Characterization, Volume 104 (2015), p. 31 | DOI:10.1016/j.matchar.2015.04.005
  • Peng Fu; Chuanhai Jiang; Xueyan Wu; Zhongquan Zhang Surface Modification of 304 Steel Using Triple-Step Shot Peening, Materials and Manufacturing Processes, Volume 30 (2015) no. 6, p. 693 | DOI:10.1080/10426914.2015.1004702
  • M. Mojtahedi; M. Goodarzi; M. R. Aboutalebi; V. Soleimanian An investigation on the microstructure and defects in the mechanically milled Cu and Fe powders, Powder Diffraction, Volume 30 (2015) no. 1, p. 14 | DOI:10.1017/s0885715614000761
  • Flavien Vucko; Cédric Bosch; David Delafosse Experimental investigations of internal and effective stresses during fatigue loading of high-strength steel, Materials Science and Engineering: A, Volume 597 (2014), p. 381 | DOI:10.1016/j.msea.2014.01.016

Cité par 51 documents. Sources : Crossref

Commentaires - Politique