The theoretical basis of X-ray line profile analysis and its application to microstructural characterization of plastically deformed metallic alloys is presented. The microstructure is described in terms of coherent domain size, planar fault density, dislocation density and a dislocation arrangement parameter. Two evaluation methods are introduced: the momentum method and the extended Convolutional Multiple Whole Profile fit procedure. Their use is exemplified on plastically deformed single crystals, single grains residing in the bulk of a polycrystal and family of grains making up texture components. The selected examples show the potential of X-ray line profile analysis applied to diffraction patterns recorded with laboratory or synchrotron sources.
Nous présentons la base théorique de lʼanalyse des profils de raie en rayons X, et son application à la caractérisation microstructurale de métaux déformés plastiquement. La microstructure est décrite en termes de taille de domaine cohérent, densité de défauts planaires, densité de dislocations et un paramètre dʼarrangement des dislocations. Nous introduisons deux méthodes dʼanalyse : la méthode des moments, et la méthode étendue dʼajustement par analyse Convolutional Multiple Whole Profile. Nous présentons des exemples dʼutilisation de ces mesures sur la déformation plastique de monocristaux, de monocristaux résidant dans le volume dʼun polycristal, et dans le cas de familles de grains constituant des composantes de texture. Les exemples sélectionnés montrent le potentiel de la technique dʼanalyse du profil de raies obtenues soit par des sources de laboratoire ou par rayonnement synchrotron.
Mot clés : Métaux et alliages, Diffraction des rayons X, Analyse des profils de raie, Densité de dislocations, Défauts planaires
András Borbély 1; Tamás Ungár 2
@article{CRPHYS_2012__13_3_293_0, author = {Andr\'as Borb\'ely and Tam\'as Ung\'ar}, title = {\protect\emph{X}-ray line profiles analysis of plastically deformed metals}, journal = {Comptes Rendus. Physique}, pages = {293--306}, publisher = {Elsevier}, volume = {13}, number = {3}, year = {2012}, doi = {10.1016/j.crhy.2011.12.004}, language = {en}, }
András Borbély; Tamás Ungár. X-ray line profiles analysis of plastically deformed metals. Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 293-306. doi : 10.1016/j.crhy.2011.12.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.12.004/
[1] Acta Cryst., 22 (1967), pp. 151-152
[2] Accuracy in Powder Diffraction (S. Block; C.R. Hubbard, eds.), NBS Special Publication, vol. 567, National Bureau of Standards, Washington DC, 1980, p. 255
[3] J. Appl. Cryst., 15 (1982), pp. 430-438
[4] J. Appl. Cryst., 17 (1984), pp. 352-357
[5] J. Appl. Cryst., 19 (1986), pp. 440-447
[6] Aust. J. Phys., 41 (1988), pp. 173-187
[7] J. Appl. Cryst., 28 (1995), pp. 244-245
[8] Defect and Microstructure Analysis from Diffraction (R.L. Snyder; H.J. Bunge; J. Fiala, eds.), IUCr Monographs on Crystallography, vol. 10, Oxford University Press, New York, 1999, p. 94
[9] Proc. Cambridge Philos. Soc., 38 (1942), pp. 313-322
[10] J. Appl. Phys., 21 (1950), pp. 595-597
[11] Acta Cryst., 3 (1950), pp. 14-18
[12] Fiz. Metallov Metalloved., 15 (1963), pp. 18-31
[13] Theory of X-ray and Thermal Neutron Scattering by Real Crystals, Springer-Verlag, Berlin, 1996
[14] Phys. Stat. Sol. (a), 2 (1970), pp. 359-370
[15] M. Wilkens, in: J.A. Simmons, R. de Wit, R. Bullough (Eds.), Fundamental Aspects of Dislocation Theory, vol. II, Spec. Publ. No. 317, Nat. Bur. Stand. (US), Washington, DC, USA, 1970, p. 1195.
[16] Proc. 5th Riso Int. Symp. Met. Mat. Sci. (N.H. Andersen et al., eds.), Risø Nat. Lab., Roskilde, Denmark, 1984, pp. 245-254
[17] J. Appl. Cryst., 21 (1989), pp. 47-53
[18] J. Appl. Cryst., 22 (1989), pp. 26-34
[19] Phys. Rev. B, 57 (1998), pp. 7535-7542
[20] Appl. Phys. Lett., 79 (2001), pp. 1772-1774
[21] J. Appl. Cryst., 33 (2000), pp. 296-306
[22] J. Appl. Cryst., 34 (2001), pp. 730-736
[23] Acta Cryst. A, 58 (2002), pp. 190-200
[24] Phil. Mag. A, 83 (2003), pp. 4045-4057
[25] Proc. Roy. Soc. London A, 433 (1991), pp. 499-520
[26] J. Appl. Cryst., 32 (1999), pp. 992-1002
[27] J. Appl. Cryst., 34 (2001), pp. 298-310
[28] J. Appl. Phys., 100 (2006), p. 023512
[29] J. Appl. Cryst., 42 (2009), pp. 580-591
[30] J. Appl. Cryst., 34 (2001), pp. 669-676
[31] Acta Metall., 30 (1982), pp. 1861-1867
[32] Acta Metall., 32 (1984), pp. 333-342
[33] Acta Mater., 53 (2005), pp. 315-322
[34] Nature, 428 (2004), pp. 837-840
[35] Scripta Mater., 63 (2010), pp. 69-72
[36] Diffraction Analysis of the Microstructure of Materials (E.J. Mittemeijer; P. Scardi, eds.), Springer Ser. Mater. Sci, vol. 68, Springer-Verlag, Berlin, 2004, p. 51
[37] Mater. Sci. Eng. A, 387–389 (2004), pp. 343-347 http://www.renyi.hu/cmwp (a free software can be found at the homepage:)
[38] Acta Mater., 53 (2005), pp. 5229-5239
[39] The Optical Principles of the Diffraction of X-Rays, G. Bell and Sons, Ltd., London, 1965
[40] J. Appl. Cryst., 37 (2004), pp. 381-390
[41] Rep. Progr. Phys., 59 (1996), pp. 131-234
[42] Acta Metall. Mater., 43 (1995), pp. 319-328
[43] Phil. Mag. A, 77 (1998), pp. 621-640
[44] J. Appl. Cryst., 37 (2004), pp. 629-634
[45] X-ray Optics, Methuen, London, 1962
[46] Proc. Phys. Soc., 80 (1962), p. 286
[47] Proc. Phys. Soc., 81 (1963), p. 41
[48] J. Appl. Cryst., 11 (1978), pp. 102-113
[49] J. Appl. Cryst., 33 (2000), pp. 964-974
[50] J. Appl. Cryst., 35 (2002), pp. 338-346
[51] Acta Mater., 56 (2008), pp. 2456-2468
[52] Acta Mater., 56 (2008), pp. 3699-3707
[53] Anorg. Allg. Chem., 589 (1990), pp. 79-88
[54] http://metal.elte.hu/~evente/stacking
[55] X-Ray Diffraction, Dover Publications, New York, 1990
[56] J. Appl. Phys., 23 (1952), pp. 497-498
[57] Phys. Rev. B, 55 (1997), pp. 1793-1810
[58] Z. Metallk., 71 (1980), p. 376
[59] Phys. Rev. B, 62 (2000), pp. 3093-3098
[60] Mat. Sci. Eng. A, 309 (2001), pp. 352-355
[61] Scripta Mater., 45 (2001), pp. 55-60
[62] J. Appl. Cryst., 35 (2002), pp. 589-593
[63] Phil. Mag. A, 53 (1986), pp. 793-813
[64] Acta Mater., 55 (2007), pp. 3421-3430
[65] Mat. Sci. Eng. A, 309–310 (2001), pp. 49-54
[66] J. Appl. Cryst., 41 (2008), pp. 747-753
[67] Z. Kristallogr. Suppl., 23 (2006), pp. 87-92
[68] J. Appl. Cryst., 36 (2003), pp. 160-162 http://metal.elte.hu/anizc (a free computer program is available at:)
[69] J. Appl. Cryst., 31 (1998), pp. 176-180
[70] Phys. Stat. Sol. A, 147 (1999), pp. 425-434
[71] Acta Mater., 52 (2004), pp. 2889-2894
[72] Mat. Sci. Eng. A, 387–389 (2004), pp. 331-335
[73] J. Powder Diffr., 23 (2008), pp. 125-132
[74] Acta Metall., 29 (1981), pp. 951-968
[75] Metallurg. Rev., 118 (1968), pp. 169-193
[76] Acta Mater., 56 (2008), pp. 3927-3939
[77] Phys. Rev. B, 79 (2009), p. 064110
[78] Proc. Phil. Mag., 87 (2007), pp. 4287-4322
[79] J. Appl. Cryst., 34 (2001), pp. 744-750
[80] Mater. Today, 9 (2006), pp. 18-25
[81] Scripta Mater., 49 (2003), pp. 1093-1096
[82] ImageD11 http://sourceforge.net/projects/fable/files/ImageD11/
[83] Appl. Phys. Lett., 69 (1996), pp. 3173-3175
[84] Acta Mater., 48 (2000), pp. 2005-2016
[85] Z. Metallk., 93 (2002), pp. 689-693
[86] Acta Mater., 52 (2004), pp. 3413-3423
Cited by Sources:
Comments - Policy