[Éléments physiques multiples déterminant les signatures des ondes gravitationnelles de supernovas à effondrement de cœur]
Nous passons en revue les progrès récents en matière de prédiction théorique dʼémission dʼondes gravitationnelles par les supernovae gravitationnelles. Après un bref survol des méthodes numériques, nous récapitulons les éléments physiques qui déterminent les signatures en ondes gravitationnelles considérées comme essentielles pour extraire les informations encore cachées à lʼobservation du mécanisme dʼexplosion de supernova. Nous concluons par un résumé des tâches urgents à accomplir pour que ce rêve devienne réalité.
We review recent progress in the theoretical predictions of gravitational waves (GWs) of core-collapse supernovae. Following a brief summary of the methods in the numerical modeling, we summarize multiple physical elements that determine the GW signatures which have been considered to be important in extracting the information of the long-veiled explosion mechanism from the observation of the GWs. We conclude with a summary of the most urgent tasks to make the dream come true.
Mots-clés : Supernovas, Hydrodynamique radiative, Physique des ondes gravitationnelles, Physique des neutrinos
Kei Kotake 1, 2
@article{CRPHYS_2013__14_4_318_0, author = {Kei Kotake}, title = {Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae}, journal = {Comptes Rendus. Physique}, pages = {318--351}, publisher = {Elsevier}, volume = {14}, number = {4}, year = {2013}, doi = {10.1016/j.crhy.2013.01.008}, language = {en}, }
Kei Kotake. Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae. Comptes Rendus. Physique, Gravitational waves / Ondes gravitationnelles, Volume 14 (2013) no. 4, pp. 318-351. doi : 10.1016/j.crhy.2013.01.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.01.008/
[1] Detection of neutrinos from supernovae in nearby galaxies, Phys. Rev. Lett., Volume 95 (2005) no. 17, p. 171101 | arXiv | DOI
[2] Observation of a neutrino burst from the supernova SN1987A, Phys. Rev. Lett., Volume 58 (1987), pp. 1490-1493 | DOI
[3] Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud, Phys. Rev. Lett., Volume 58 (1987), pp. 1494-1496 | DOI
[4] Analysis of the neutrino burst from supernova 1987A in the Large Magellanic Cloud, Phys. Rev. Lett., Volume 58 (1987), pp. 2722-2725 | DOI
[5] Physics with supernovae, Nucl. Phys., B Proc. Suppl., Volume 110 (2002), pp. 254-267 | arXiv | DOI
[6] Neutrino astronomy, Rep. Progr. Phys., Volume 55 (1992), pp. 377-430 | DOI
[7] Future detection of supernova neutrino burst and explosion mechanism, Astrophys. J., Volume 496 (1998), p. 216 | arXiv | DOI
[8] Supernovae and neutrinos, Nucl. Phys., B Proc. Suppl., Volume 118 (2003), pp. 307-314 | arXiv | DOI
[9] Physics opportunities with supernova neutrinos, Prog. Part. Nucl. Phys., Volume 64 (2010), pp. 393-399 | DOI
[10] et al. Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts, Phys. Rev. D, Volume 72 (2005) no. 12, p. 122004 | arXiv | DOI
[11] Current status of the TAMA300 gravitational-wave detector, Class. Quantum Gravity, Volume 22 (2005), p. 881 | DOI
[12] The search for gravitational waves, J. Phys. B, Volume 38 (2005), p. 497 | arXiv | DOI
[13] M. van der Sluys, Gravitational waves from compact binaries, . | arXiv
[14] Advanced LIGO: the next generation of gravitational wave detectors, Class. Quantum Gravity, Volume 27 (2010) no. 8, p. 084006 | DOI
[15] Status of LCGT, Class. Quantum Gravity, Volume 27 (2010) no. 8, p. 084004 | DOI
[16] Physics, astrophysics and cosmology with gravitational waves, Living Rev. Relativ., Volume 12 (2009), p. 2 | arXiv
[17] Status of neutron star-black hole and binary neutron star simulations, Class. Quantum Gravity, Volume 26 (2009) no. 11, p. 114004 | DOI
[18] Numerical relativity confronts compact neutron star binaries: a review and status report, Class. Quantum Gravity, Volume 27 (2010) no. 11, p. 114002 | arXiv | DOI
[19] TOPICAL REVIEW: Gravitational waves from instabilities in relativistic stars, Class. Quantum Gravity, Volume 20 (2003), p. 105 | arXiv
[20] C.J. Horowitz, Multi-messenger observations of neutron rich matter, . | arXiv
[21] Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae, Rep. Progr. Phys., Volume 69 (2006), pp. 971-1143 | arXiv
[22] TOPICAL REVIEW: The gravitational-wave signature of core-collapse supernovae, Class. Quantum Gravity, Volume 26 (2009) no. 6, p. 063001 | arXiv | DOI
[23] Gravitational waves from gravitational collapse, Living Rev. Relativ., Volume 14 (2011), p. 1
[24] Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects, Wiley-Interscience, New York, 1983 (663 pp. Research supported by the National Science Foundation)
[25] Bipolar supernova explosions, Astrophys. J., Volume 550 (2001), pp. 1030-1035 | DOI
[26] The axisymmetric ejecta of supernova 1987A, Astrophys. J., Volume 579 (2002), pp. 671-677 | DOI
[27] Asphericity in supernova explosions from late-time spectroscopy, Science, Volume 319 (2008), p. 1220 | arXiv | DOI
[28] The 3-D structure of SN 1987Aʼs inner ejecta, Astron. Astrophys., Volume 517 (2010), p. A51 | arXiv | DOI
[29] A non-spherical core in the explosion of supernova SN 2004dj, Nature, Volume 440 (2006), pp. 505-507 | arXiv | DOI
[30] A non-spherical core in the explosion of supernova SN 2004dj, Nature, Volume 440 (2006), pp. 505-507 | arXiv | DOI
[31] Jet-induced explosions of core collapse supernovae, Astrophys. J. Lett., Volume 524 (1999), p. L107-L110 | DOI
[32] Asymmetric supernovae, pulsars, magnetars, and gamma-ray bursts, Astrophys. J., Volume 537 (2000), pp. 810-823 | arXiv | DOI
[33] Resonant amplification of neutrino oscillations in matter and solar-neutrino spectroscopy, Nuovo Cimento C, Volume 9 (1986), pp. 17-26 | DOI
[34] TOPICAL REVIEW: neutrino flavour transformation in supernovae, J. Phys., G, Nucl. Part. Phys., Volume 36 (2009) no. 11, p. 113201 | arXiv | DOI
[35] Theory of core-collapse supernovae, Phys. Rep., Volume 442 (2007), pp. 38-74 | arXiv | DOI
[36] Multi-dimensional explorations in supernova theory, Phys. Rep., Volume 442 (2007), pp. 23-37 | arXiv | DOI
[37] Multimessenger astronomy with the Einstein Telescope, Gen. Relativity Gravitation, Volume 43 (2011), pp. 437-464 | arXiv | DOI
[38] Transient multimessenger astronomy with gravitational waves, Class. Quantum Gravity, Volume 28 (2011) no. 11, p. 114013 | DOI
[39] The Antares neutrino telescope and multi-messenger astronomy, Class. Quantum Gravity, Volume 27 (2010) no. 19, p. 194004 | arXiv | DOI
[40] Search method for coincident events from LIGO and IceCube detectors, Class. Quantum Gravity, Volume 25 (2008) no. 11, p. 114039 | arXiv | DOI
[41] S. Ando, B. Baret, B. Bouhou, E. Chassande-Mottin, A. Kouchner, L. Moscoso, V. Van Elewyck, I. Bartos, S. Márka, Z. Márka, A. Corsi, I. Di Palma, M.A. Papa, A. Dietz, C. Donzaud, D. Eichler, C. Finley, D. Guetta, F. Halzen, G. Jones, P.J. Sutton, S. Kandhasamy, V. Mandic, E. Thrane, K. Kotake, T. Piran, T. Pradier, G.E. Romero, E. Waxman, Multimessenger astronomy with gravitational waves and high-energy neutrinos, . | arXiv
[42] The hydrodynamic behavior of supernovae explosions, Astrophys. J., Volume 143 (1966), p. 626 | DOI
[43] J.R. Wilson, Supernovae and post-collapse behavior, in: Numerical Astrophysics, 1985, 422 pp.
[44] Revival of a stalled supernova shock by neutrino heating, Astrophys. J., Volume 295 (1985), pp. 14-23 | DOI
[45] Supernova mechanisms, Rev. Modern Phys., Volume 62 (1990), pp. 801-866 | DOI
[46] Dimension as a key to the neutrino mechanism of core-collapse supernova explosions, Astrophys. J., Volume 720 (2010), pp. 694-703 | arXiv | DOI
[47] Spherically symmetric simulation with Boltzmann neutrino transport of core collapse and postbounce evolution of a 15 Msun star, Astrophys. J. Lett., Volume 539 (2000), p. L33-L36
[48] Conservative general relativistic radiation hydrodynamics in spherical symmetry and comoving coordinates, Phys. Rev. D, Volume 63 (2001) no. 10, p. 104003
[49] Shock breakout in core-collapse supernovae and its neutrino signature, Astrophys. J., Volume 592 (2003), pp. 434-456
[50] Postbounce evolution of core-collapse supernovae: long-term effects of the equation of state, Astrophys. J., Volume 629 (2005), pp. 922-932 | arXiv | DOI
[51] On the requirements for realistic modeling of neutrino transport in simulations of core-collapse supernovae, Astrophys. J., Volume 747 (2012), p. 73 | arXiv | DOI
[52] Explosions of O–Ne–Mg cores, the Crab supernova, and subluminous type II-P supernovae, Astron. Astrophys., Volume 450 (2006), pp. 345-350 | arXiv | DOI
[53] Three-dimensional explosion geometry of stripped-envelope core-collapse supernovae. I. Spectropolarimetric observations, Astrophys. J., Volume 754 (2012), p. 63 | arXiv | DOI
[54] Inside the supernova: A powerful convective engine, Astrophys. J., Volume 435 (1994), pp. 339-361 | arXiv | DOI
[55] On the nature of core-collapse supernova explosions, Astrophys. J., Volume 450 (1995), p. 830 | arXiv | DOI
[56] Neutrino heating, convection, and the mechanism of Type-II supernova explosions, Astron. Astrophys., Volume 306 (1996), p. 167
[57] Gravitational wave emission from core collapse of massive stars, Astrophys. J., Volume 565 (2002), pp. 430-446
[58] Neutron star kicks from asymmetric collapse, Astrophys. J. Lett., Volume 601 (2004), p. L175-L178
[59] Stability of standing accretion shocks, with an eye toward core-collapse supernovae, Astrophys. J., Volume 584 (2003), pp. 971-980 | arXiv | DOI
[60] Pulsar recoil by large-scale anisotropies in supernova explosions, Phys. Rev. Lett., Volume 92 (2004) no. 1, p. 011103 | arXiv
[61] Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions, Astron. Astrophys., Volume 457 (2006), pp. 963-986 | arXiv | DOI
[62] Numerical analysis of standing accretion shock instability with neutrino heating in supernova cores, Astrophys. J., Volume 641 (2006), pp. 1018-1028 | arXiv | DOI
[63] Inelastic neutrino–helium scatterings and standing accretion shock instability in core-collapse supernovae, Astrophys. J., Volume 667 (2007), pp. 375-381 | arXiv | DOI
[64] Neutrino-driven convection versus advection in core-collapse supernovae, Astrophys. J., Volume 652 (2006), pp. 1436-1450 | arXiv | DOI
[65] Criteria for Core-Collapse Supernova explosions by the neutrino mechanism, Astrophys. J., Volume 688 (2008), pp. 1159-1175 | arXiv | DOI
[66] Stability of a spherical accretion shock with nuclear dissociation, Astrophys. J., Volume 697 (2009), pp. 1827-1841 | arXiv | DOI
[67] Dynamics of a spherical accretion shock with neutrino heating and alpha-particle recombination, Astrophys. J., Volume 703 (2009), pp. 1464-1485 | arXiv | DOI
[68] Three-dimensional simulations of standing accretion shock instability in core-collapse supernovae, Astrophys. J., Volume 678 (2008), pp. 1207-1222 | arXiv | DOI
[69] Effects of rotation on standing accretion shock instability in nonlinear phase for Core-Collapse Supernovae, Astrophys. J., Volume 700 (2009), pp. 232-242 | arXiv | DOI
[70] The spiral modes of the standing accretion shock instability, Astrophys. J., Volume 725 (2010), pp. 1563-1580 | arXiv | DOI
[71] K. Kotake, K. Sumiyoshi, S. Yamada, T. Takiwaki, T. Kuroda, Y. Suwa, H. Nagakura, Core-collapse supernovae as supercomputing science: a status report toward 6D simulations with exact Boltzmann neutrino transport in full general relativity, . | arXiv
[72] Conditions for shock revival by neutrino heating in core-collapse supernovae, Astron. Astrophys., Volume 368 (2001), pp. 527-560 | arXiv | DOI
[73] An axis-free overset grid in spherical polar coordinates for simulating 3D self-gravitating flows, Astron. Astrophys., Volume 514 (2010), p. A48 | arXiv | DOI
[74] Is strong SASI activity the key to successful neutrino-driven supernova explosions?, Astrophys. J., Volume 755 (2012), p. 138 | arXiv | DOI
[75] Presupernova evolution of massive stars, Phys. Rep., Volume 163 (1988), pp. 13-36 | DOI
[76] The evolution and explosion of massive stars, Rev. Modern Phys., Volume 74 (2002), pp. 1015-1071 | DOI
[77] The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis, Astrophys. J. Suppl., Volume 101 (1995), p. 181 | DOI
[78] Dynamics of shock propagation and nucleosynthesis conditions in O–Ne–Mg core supernovae, Astron. Astrophys., Volume 485 (2008), pp. 199-208 | arXiv | DOI
[79] A new mechanism for core-collapse supernova explosions, Astrophys. J., Volume 640 (2006), pp. 878-890 | arXiv | DOI
[80] Signals of the QCD phase transition in core-collapse supernovae, Phys. Rev. Lett., Volume 102 (2009) no. 8, p. 081101 | arXiv | DOI
[81] Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. II. Models for different progenitor stars, Astron. Astrophys., Volume 457 (2006), pp. 281-308 | arXiv | DOI
[82] A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. II. Relativistic explosion models of core-collapse supernovae, Astrophys. J., Volume 756 (2012), p. 84 | arXiv | DOI
[83] Features of the acoustic mechanism of core-collapse supernova explosions, Astrophys. J., Volume 655 (2007), pp. 416-433 | arXiv | DOI
[84] Three-dimensional hydrodynamic core-collapse supernova simulations for an 11.2
[85] S.W. Bruenn, A. Mezzacappa, W.R. Hix, J.M. Blondin, P. Marronetti, O.E.B. Messer, C.J. Dirk, S. Yoshida, 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code, . | arXiv
[86] Explosion geometry of a rotating 13 Msun star driven by the SASI-aided neutrino-heating supernova mechanism, Publ. Astron. Soc. Jpn., Volume 62 (2010), p. L49 | arXiv
[87] Delayed neutrino-driven supernova explosions aided by the standing accretion-shock instability, Astrophys. J., Volume 694 (2009), pp. 664-696 | arXiv | DOI
[88] B. Müller, H.-T. Janka, A. Heger, New two-dimensional models of supernova explosions by the neutrino-heating mechanism: evidence for different instability regimes in collapsing stellar cores, . | arXiv
[89] Supernova neutrino challenges, Nucl. Phys., B Proc. Suppl., Volume 145 (2005), pp. 295-300 | arXiv | DOI
[90] Presupernova evolution of differentially rotating massive stars including magnetic fields, Astrophys. J., Volume 626 (2005), pp. 350-363 | arXiv | DOI
[91] Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 Mȯ star, Astron. Astrophys., Volume 447 (2006), pp. 1049-1092 | arXiv | DOI
[92] Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests, Astron. Astrophys., Volume 388 (2002), pp. 917-935 | arXiv | DOI
[93] Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue, Phys. Rev. D, Volume 79 (2009) no. 2, p. 024017 | arXiv | DOI
[94] Two-dimensional multiangle, multigroup neutrino radiation-hydrodynamic simulations of postbounce supernova cores, Astrophys. J., Volume 685 (2008), pp. 1069-1088 | arXiv | DOI
[95] Results from core-collapse simulations with multi-dimensional, multi-angle neutrino transport, Astrophys. J., Volume 728 (2011), p. 8 | arXiv | DOI
[96] Stellar core collapse – Numerical model and infall epoch, Astrophys. J. Suppl., Volume 58 (1985), pp. 771-841 | DOI
[97] Gravitational waves from core collapse supernovae, Class. Quantum Gravity, Volume 27 (2010) no. 19, p. 194005 | arXiv | DOI
[98] The isotropic diffusion source approximation for supernova neutrino transport, Astrophys. J., Volume 698 (2009), pp. 1174-1190 | arXiv | DOI
[99] Supernova simulations with Boltzmann neutrino transport: a comparison of methods, Astrophys. J., Volume 620 (2005), pp. 840-860 | arXiv | DOI
[100] A general relativistic ray-tracing method for estimating the energy and momentum deposition by neutrino pair annihilation in collapsars, Astrophys. J., Volume 720 (2010), pp. 614-625 | DOI
[101] A new multi-dimensional general relativistic neutrino hydrodynamic code for core-collapse supernovae. I. Method and code tests in spherical symmetry, Astrophys. J. Suppl., Volume 189 (2010), pp. 104-133 | arXiv | DOI
[102] M. Shibata, K. Kiuchi, Y.-i. Sekiguchi, Y. Suwa, Truncated moment formalism for radiation hydrodynamics in numerical relativity, . | arXiv
[103] Fully general relativistic simulations of core-collapse supernovae with an approximate neutrino transport, Astrophys. J., Volume 755 (2012), p. 11 | arXiv | DOI
[104] C.Y. Cardall, E. Endeve, A. Mezzacappa, Conservative
[105] A statistical model for a complete supernova equation of state, Nucl. Phys. A, Volume 837 (2010), pp. 210-254 | arXiv | DOI
[106] A new baryonic equation of state at sub-nuclear densities for core-collapse simulations | arXiv
[107] Second relativistic mean field and virial equation of state for astrophysical simulations, Phys. Rev. C, Volume 83 (2011) no. 6, p. 065808 | arXiv | DOI
[108] Gravitational radiation from collapsing rotating stellar cores, Astron. Astrophys., Volume 114 (1982), pp. 53-59
[109] Gravitational waves from the collapse of rotating stellar cores, Astron. Astrophys., Volume 246 (1991), pp. 417-440
[110] Gravitational radiation from rotational collapse of a supernova core, Astrophys. J., Volume 450 (1995), p. 245 | DOI
[111] Dynamics and gravitational wave signature of axisymmetric rotational core collapse, Astron. Astrophys., Volume 320 (1997), pp. 209-227
[112] Gravitational radiation from axisymmetric rotational core collapse, Phys. Rev. D, Volume 68 (2003) no. 4, p. 044023
[113] Gravitational radiation from rotational core collapse: Effects of magnetic fields and realistic equations of state, Phys. Rev. D, Volume 69 (2004) no. 12, p. 124004
[114] Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity, Phys. Rev. D, Volume 69 (2004) no. 8, p. 084024 | arXiv | DOI
[115] Gravitational waves from axisymmetric, rotating stellar core collapse, Astrophys. J., Volume 600 (2004), pp. 834-864 | arXiv | DOI
[116] 3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state, Phys. Rev. Lett., Volume 98 (2007) no. 26, p. 261101 | arXiv | DOI
[117] Rotating collapse of stellar iron cores in general relativity, Class. Quantum Gravity, Volume 24 (2007), p. 139 | arXiv | DOI
[118] Relativistic simulations of rotational core collapse II. Collapse dynamics and gravitational radiation, Astron. Astrophys., Volume 393 (2002), pp. 523-542
[119] Generic gravitational-wave signals from the collapse of rotating stellar cores, Phys. Rev. Lett., Volume 98 (2007) no. 25, p. 251101 | arXiv | DOI
[120] Gravitational wave burst signal from core collapse of rotating stars, Phys. Rev. D, Volume 78 (2008) no. 6, p. 064056 | arXiv | DOI
[121] Gravitational waves from 3D MHD core collapse simulations, Astron. Astrophys., Volume 490 (2008), pp. 231-241 | arXiv | DOI
[122] The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse, Astron. Astrophys., Volume 514 (2010), p. A51 | DOI
[123] A simple parameterization of the consequences of deleptonization for simulations of stellar core collapse, Astrophys. J., Volume 633 (2005), pp. 1042-1051 | arXiv | DOI
[124] The progenitor stars of gamma-ray bursts, Astrophys. J., Volume 637 (2006), pp. 914-921 | arXiv | DOI
[125] Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts, Astron. Astrophys., Volume 443 (2005), pp. 643-648 | arXiv | DOI
[126] The spin periods and rotational profiles of neutron stars at birth, Astrophys. J. Suppl., Volume 164 (2006), pp. 130-155 | arXiv | DOI
[127] Gravitational radiation from convective instabilities in Type II supernova explosions, Astron. Astrophys., Volume 317 (1997), pp. 140-163
[128] Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion, Phys. Rev. Lett., Volume 76 (1996), pp. 352-355 | arXiv | DOI
[129] Neutron star kicks from asymmetric collapse, Astrophys. J. Lett., Volume 601 (2004), p. L175-L178 | arXiv | DOI
[130] Toward gravitational wave signals from realistic core-collapse supernova models, Astrophys. J., Volume 603 (2004), pp. 221-230 | arXiv | DOI
[131] Simulations of non-axisymmetric rotational core collapse, Astron. Astrophys., Volume 332 (1998), pp. 969-983 | arXiv
[132] 3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state, Phys. Rev. Lett., Volume 98 (2007) no. 26, p. 261101 | arXiv | DOI
[133] A new mechanism for gravitational-wave emission in core-collapse supernovae, Phys. Rev. Lett., Volume 96 (2006) no. 20, p. 201102 | arXiv | DOI
[134] Gravitational waves from neutron stars: promises and challenges, Gen. Relativity Gravitation (2010), p. 156 | arXiv | DOI
[135] Gravitational radiation from standing accretion shock instability in core-collapse supernovae, Astrophys. J., Volume 655 (2007), pp. 406-415 | arXiv | DOI
[136] Ray-tracing analysis of anisotropic neutrino radiation for estimating gravitational waves in core-collapse supernovae, Astrophys. J., Volume 704 (2009), pp. 951-963 | arXiv | DOI
[137] Stochastic nature of gravitational waves from supernova explosions with standing accretion shock instability, Astrophys. J. Lett., Volume 697 (2009), p. L133-L136 | arXiv | DOI
[138] Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae, Astron. Astrophys., Volume 496 (2009), pp. 475-494 | arXiv | DOI
[139] J.W. Murphy, C.D. Ott, A. Burrows, A model for gravitational wave emission from neutrino-driven core-collapse supernovae, . | arXiv
[140] Toward realistic progenitors of core-collapse supernovae, Astrophys. J., Volume 733 (2011), p. 78 | arXiv | DOI
[141] Parametrized 3D models of neutrino-driven supernova explosions. Neutrino emission asymmetries and gravitational-wave signals, Astron. Astrophys., Volume 537 (2012), p. A63 | arXiv | DOI
[142] The generation of gravitational radiation by escaping supernova neutrinos, Astrophys. J., Volume 223 (1978), pp. 1037-1045 | DOI
[143] M.S. Turner, R.V. Wagoner, Gravitational radiation from slowly-rotating ‘supernovae’ – Preliminary results, in: L.L. Smarr (Ed.), Sources of Gravitational Radiation, 1979, pp. 383–407.
[144] The gravitational-wave memory effect, Class. Quantum Gravity, Volume 27 (2010) no. 8, p. 084036 | arXiv | DOI
[145] Gravitational wave background from neutrino-driven gamma-ray bursts, Mon. Not. R. Astron. Soc., Volume 364 (2005), pp. 1063-1068 | arXiv | DOI
[146] Probing the central engine of long gamma-ray bursts and hypernovae with gravitational waves and neutrinos, Phys. Rev. D, Volume 80 (2009) no. 12, p. 123008 | arXiv | DOI
[147] Gravitational wave background from population III stars, Astrophys. J. Lett., Volume 665 (2007), p. L43-L46 | arXiv | DOI
[148] Anisotropic neutrino radiation in rotational core collapse, Astrophys. J., Volume 595 (2003), pp. 304-316 | DOI
[149] Anisotropic neutrino emission from rotating protoneutron stars, Astron. Astrophys., Volume 209 (1989), p. L5-L8
[150] Anisotropies in the neutrino fluxes and heating profiles in two-dimensional, time-dependent, multigroup radiation hydrodynamics simulations of rotating core-collapse supernovae, Astrophys. J., Volume 626 (2005), pp. 317-332 | arXiv | DOI
[151] Magnetically driven explosions of rapidly rotating white dwarfs following accretion-induced collapse, Astrophys. J., Volume 669 (2007), pp. 585-599 | arXiv | DOI
[152] Y. Suwa, K. Kotake, T. Takiwaki, The Gravitational-wave signatures in a rotating vs. non-rotating 13 Msun star driven by the SASI-aided neutrino-heating supernova mechanism, in preparation.
[153] An axis-free overset grid in spherical polar coordinates for simulating 3D self-gravitating flows, Astron. Astrophys., Volume 514 (2010), p. A48 | arXiv | DOI
[154] Gravitational waves from stellar collapse: correlations to explosion asymmetries, Astrophys. J., Volume 609 (2004), pp. 288-300 | arXiv | DOI
[155] Effects of rotation on stochasticity of gravitational waves in the nonlinear phase of core-collapse supernovae, Astrophys. J., Volume 736 (2011), p. 124 | arXiv | DOI
[156] A. Wongwathanarat, H. Janka, E. Mueller, Hydrodynamical neutron star kicks in three dimensions, . | arXiv
[157] K.S. Thorne, Gravitational waves, in: E.W. Kolb, R.D. Peccei (Eds.), Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, 1995, p. 160.
[158] The Japanese space gravitational wave antenna DECIGO, Class. Quantum Gravity, Volume 23 (2006), p. 125 | DOI
[159] A numerical example of the collapse of a rotating magnetized star, Astrophys. J., Volume 161 (1970), p. 541
[160] The magnetohydrodynamic rotational model of supernova explosion, Astrophys. Space Sci., Volume 41 (1976), pp. 287-320 | DOI
[161] A magnetohydrodynamical supernova model, Astron. Astrophys., Volume 80 (1979), pp. 147-154
[162] Magnetorotational iron core collapse, Astrophys. J., Volume 285 (1984), pp. 729-746 | DOI
[163] Nonstationary magnetorotational processes in a rotating magnetized cloud, Astron. Astrophys., Volume 355 (2000), pp. 1181-1190 | arXiv
[164] Numerical study on the rotational collapse of strongly magnetized cores of massive stars, Astrophys. J., Volume 608 (2004), pp. 907-924 | DOI
[165] Magnetorotational effects on anisotropic neutrino emission and convection in core-collapse supernovae, Astrophys. J., Volume 608 (2004), pp. 391-404 | DOI
[166] North–south neutrino heating asymmetry in strongly magnetized and rotating stellar cores, Astrophys. J., Volume 618 (2005), pp. 474-484 | arXiv | DOI
[167] Core-collapse supernovae with nonuniform magnetic fields, Astrophys. J., Volume 631 (2005), pp. 446-455 | DOI
[168] Axisymmetric simulations of magnetorotational core collapse: Approximate inclusion of general relativistic effects, Astron. Astrophys., Volume 457 (2006), pp. 209-222 | arXiv | DOI
[169] Axisymmetric simulations of magneto-rotational core collapse: Dynamics and gravitational wave signal, Astron. Astrophys., Volume 450 (2006), pp. 1107-1134 | arXiv | DOI
[170] Simulations of magnetically driven supernova and hypernova explosions in the context of rapid rotation, Astrophys. J., Volume 664 (2007), pp. 416-434 | arXiv | DOI
[171] P. Cerdá-Durán, J.A. Font, H. Dimmelmeier, General relativistic simulations of magneto-rotational core collapse with microphysics, . | arXiv
[172] Magnetorotational collapse of population III stars, Publ. Astron. Soc. Jpn., Volume 59 (2007), pp. 771-785
[173] Magneto-driven shock waves in core-collapse supernovae, Astrophys. J., Volume 616 (2004), pp. 1086-1094 | arXiv | DOI
[174] Special relativistic simulations of magnetically dominated jets in collapsing massive stars, Astrophys. J., Volume 691 (2009), pp. 1360-1379 | arXiv | DOI
[175] The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse | arXiv
[176] Magnetic field amplification in collapsing, non-rotating stellar cores | arXiv
[177] Formation of very strongly magnetized neutron stars – Implications for gamma-ray bursts, Astrophys. J. Lett., Volume 392 (1992), p. L9-L13 | DOI
[178] Neutron star observations: Prognosis for equation of state constraints, Phys. Rep., Volume 442 (2007), pp. 109-165 | arXiv | DOI
[179] Magnetohydrodynamic phenomena in collapsing stellar cores, Astrophys. J., Volume 204 (1976), pp. 869-878
[180] Instability, turbulence, and enhanced transport in accretion disks, Rev. Modern Phys., Volume 70 (1998), pp. 1-53
[181] The magnetorotational instability in core-collapse supernova explosions, Astrophys. J., Volume 584 (2003), pp. 954-970 | arXiv | DOI
[182] Semi-global simulations of the magneto-rotational instability in core collapse supernovae, Astron. Astrophys., Volume 498 (2009), pp. 241-271 | arXiv | DOI
[183] Y. Masada, T. Takiwaki, K. Kotake, T. Sano, Local simulations of the magneto-rotational instability in core-collapse supernovae, . | arXiv
[184] The supernova gamma-ray burst connection, Annu. Rev. Astron. Astrophys., Volume 44 (2006), pp. 507-556 | arXiv | DOI
[185] Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity, Phys. Rev. D, Volume 74 (2006) no. 10, p. 104026 | arXiv | DOI
[186] Gravitational wave signatures of magnetohydrodynamically driven core-collapse supernova explosions, Astrophys. J., Volume 743 (2011), p. 30 | arXiv | DOI
[187] Multipole expansions of gravitational radiation, Rev. Modern Phys., Volume 52 (1980), pp. 299-340 | DOI
[188] Detecting a gravitational-wave background with next-generation space interferometers, Phys. Rev. D, Volume 73 (2006) no. 6, p. 064006 | arXiv | DOI
[189] S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, 1969.
[190] Theory of Rotating Stars, Princeton Series in Astrophysics, Princeton University Press, Princeton, 1978
[191] Simulations of non-axisymmetric rotational core collapse, Astron. Astrophys., Volume 332 (1998), pp. 969-983
[192] Dynamics and gravitational wave signature of axisymmetric rotational core collapse, Astron. Astrophys., Volume 320 (1997), pp. 209-227
[193] The collapse of rotating massive stars in three dimensions, Astrophys. J., Volume 601 (2004), pp. 391-404 | arXiv | DOI
[194] Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities, Phys. Rev. D, Volume 71 (2005) no. 2, p. 024014 | arXiv | DOI
[195] Rotating collapse of stellar iron cores in general relativity, Class. Quantum Gravity, Volume 24 (2007), p. 139 | arXiv | DOI
[196] Gravitational radiation from rapidly rotating nascent neutron stars, Astrophys. J., Volume 442 (1995), pp. 259-272 | arXiv | DOI
[197] K.D. Kokkotas, Gravitational wave astronomy, . | arXiv
[198] One-armed spiral instability in a low-
[199] Dynamical instability of differentially rotating stars, Mon. Not. R. Astron. Soc., Volume 334 (2002), p. L27-L31 | arXiv | DOI
[200] One-armed spiral instability in differentially rotating stars, Astrophys. J., Volume 595 (2003), pp. 352-364 | arXiv | DOI
[201] The nature of low
[202] Unexpected dynamical instabilities in differentially rotating neutron stars, Astrophys. J., Volume 651 (2006), pp. 1068-1078 | arXiv | DOI
[203] AMR simulations of the low
[204] Low
[205] The dynamical stability of differentially rotating discs. II, Mon. Not. R. Astron. Soc., Volume 213 (1985), pp. 799-820
[206] Dynamical rotational instability at low
[207] Fast time variations of supernova neutrino fluxes and their detectability, Phys. Rev. D, Volume 82 (2010) no. 6, p. 063007 | arXiv | DOI
[208] Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational-wave data | arXiv
[209] r-Process nucleosynthesis in magnetohydrodynamic jet explosions of core-collapse supernovae, Astrophys. J., Volume 642 (2006), pp. 410-419 | arXiv | DOI
[210] Heavy-element nucleosynthesis in a collapsar, Astrophys. J., Volume 656 (2007), pp. 382-392 | arXiv | DOI
[211] M. Ono, M.-a. Hashimoto, S.-i. Fujimoto, K. Kotake, S. Yamada, Explosive nucleosynthesis in magnetohydrodynamical jets from collapsars II. Heavy-element nucleosynthesis of s, r, p-processes, . | arXiv
[212] Uncertainties in the νp-process: supernova dynamics versus nuclear physics, Astrophys. J., Volume 729 (2011), p. 46 | arXiv | DOI
[213] The r-process in the neutrino-driven wind from a black-hole torus, Astrophys. J., Volume 746 (2012), p. 180 | arXiv | DOI
[214] Core-collapse supernova explosions triggered by a quark–hadron phase transition during the early post-bounce phase, Astrophys. J. Suppl., Volume 194 (2011), p. 39 | arXiv | DOI
[215] Viscosity and rotation in core-collapse supernovae, Astrophys. J., Volume 620 (2005), pp. 861-877 | arXiv | DOI
[216] Alfvén wave-driven supernova explosion, Astrophys. J., Volume 678 (2008), pp. 1200-1206 | arXiv | DOI
[217] The saturation of SASI by parasitic instabilities, Astrophys. J., Volume 713 (2010), pp. 1350-1362 | arXiv | DOI
[218] J.W. Murphy, C. Meakin, A global turbulence model for neutrino-driven convection in core-collapse supernovae, . | arXiv
[219] Dynamics and gravitational wave signature of collapsar formation, Phys. Rev. Lett., Volume 106 (2011) no. 16, p. 161103 | arXiv | DOI
[220] Neutrino signals from the formation of a black hole: a probe of the equation of state of dense matter, Phys. Rev. Lett., Volume 97 (2006) no. 9, p. 091101 | arXiv | DOI
[221] Exploring hadron physics in black hole formations: A new promising target of neutrino astronomy, Phys. Rev. D, Volume 81 (2010) no. 8, p. 083009 | arXiv | DOI
[222] Impact of quarks and pions on dynamics and neutrino signal of black hole formation in non-rotating stellar core collapse, Astrophys. J., Volume 721 (2010), pp. 1284-1294 | arXiv | DOI
[223] The phase diagram of dense QCD, Rep. Progr. Phys., Volume 74 (2011) no. 1, p. 014001 | arXiv | DOI
[224] Super-Eddington winds from neutron stars, Astrophys. J., Volume 363 (1990), pp. 218-226 | DOI
[225] High-entropy fireballs and jets in gamma-ray burst sources, Mon. Not. R. Astron. Soc., Volume 257 (1992), p. 29P-31P
[226] Magnetar spin-down, hyperenergetic supernovae, and gamma-ray bursts, Astrophys. J., Volume 611 (2004), pp. 380-393 | arXiv | DOI
[227] Magnetar-driven magnetic tower as a model for gamma-ray bursts and asymmetric supernovae, Astrophys. J., Volume 669 (2007), pp. 546-560 | arXiv | DOI
[228] Gamma-ray bursts from stellar mass accretion disks around black holes, Astrophys. J., Volume 405 (1993), pp. 273-277 | DOI
[229] Are gamma-ray bursts in star-forming regions?, Astrophys. J. Lett., Volume 494 (1998), p. L45 | arXiv | DOI
[230] Collapsars: Gamma-ray bursts and explosions in “failed supernovae”, Astrophys. J., Volume 524 (1999), pp. 262-289 | arXiv | DOI
[231] Gamma-ray burst afterglows and evolution of postburst fireballs with energy injection from strongly magnetic millisecond pulsars, Astron. Astrophys., Volume 333 (1998), p. L87-L90 | arXiv
[232] Relativistic jets and long-duration gamma-ray bursts from the birth of magnetars, Mon. Not. R. Astron. Soc. (2007), p. L126 | arXiv | DOI
[233] The protomagnetar model for gamma-ray bursts, Mon. Not. R. Astron. Soc., Volume 413 (2011), pp. 2031-2056 | arXiv | DOI
[234] Long-term evolution of slowly rotating collapsar in special relativistic magnetohydrodynamics, Astrophys. J., Volume 704 (2009), pp. 354-371 | arXiv | DOI
[235] Neutrino pair annihilation in collapsars: A ray-tracing method in special relativity, Astrophys. J., Volume 713 (2010), pp. 304-317 | arXiv | DOI
[236] Gravitational wave signatures of hyperaccreting collapsar disks, Astrophys. J., Volume 755 (2012), p. 84 | arXiv | DOI
[237] Multimessengers from core-collapse supernovae: Multidimensionality as a key to bridge theory and observation, Adv. Astron., Volume 2012 (2012), p. 428757 http://ads.nao.ac.jp/abs/2012AdAst2012E..39K (provided by the SAO/NASA Astrophysics Data System) | arXiv | DOI
[238] Nucleosynthesis and remnants in massive stars of solar metallicity, Phys. Rep., Volume 442 (2007), pp. 269-283 | arXiv | DOI
[239] Massive stars and their supernovae (R. Diehl; D.H. Hartmann; N. Prantzos, eds.), Lecture Notes in Physics, vol. 812, Springer-Verlag, Berlin, 2011, pp. 153-232 | arXiv
- Pulsar-wind nebulae meeting the circumstellar media of their progenitors, Astronomy Astrophysics, Volume 692 (2024), p. A207 | DOI:10.1051/0004-6361/202451000
- Evaluating machine learning models for supernova gravitational wave signal classification, Machine Learning: Science and Technology, Volume 5 (2024) no. 4, p. 045077 | DOI:10.1088/2632-2153/ada33a
- Red supergiant candidates for multimessenger monitoring of the next Galactic supernova, Monthly Notices of the Royal Astronomical Society, Volume 529 (2024) no. 4, p. 3630 | DOI:10.1093/mnras/stae738
- Three-dimensional GRMHD simulations of rapidly rotating stellar core collapse, Monthly Notices of the Royal Astronomical Society, Volume 531 (2024) no. 3, p. 3732 | DOI:10.1093/mnras/stae1361
- Gravitational-wave and Gravitational-wave Memory Signatures of Core-collapse Supernovae, The Astrophysical Journal, Volume 975 (2024) no. 1, p. 12 | DOI:10.3847/1538-4357/ad74f8
- Equation of State in Neutron Stars and Supernovae, Handbook of Nuclear Physics (2023), p. 1 | DOI:10.1007/978-981-15-8818-1_104-1
- Equation of State in Neutron Stars and Supernovae, Handbook of Nuclear Physics (2023), p. 3127 | DOI:10.1007/978-981-19-6345-2_104
- Exploring supernova gravitational waves with machine learning, Monthly Notices of the Royal Astronomical Society, Volume 520 (2023) no. 2, p. 2473 | DOI:10.1093/mnras/stad169
- Design of a tabletop interferometer with quantum amplification, Physical Review A, Volume 107 (2023) no. 4 | DOI:10.1103/physreva.107.043701
- Characterizing a supernova’s standing accretion shock instability with neutrinos and gravitational waves, Physical Review D, Volume 107 (2023) no. 8 | DOI:10.1103/physrevd.107.083017
- Multimessenger signals of heavy axionlike particles in core-collapse supernovae: Two-dimensional simulations, Physical Review D, Volume 108 (2023) no. 6 | DOI:10.1103/physrevd.108.063027
- Effects of nuclear matter and composition in core-collapse supernovae and long-term proto-neutron star cooling, Progress of Theoretical and Experimental Physics, Volume 2023 (2023) no. 1 | DOI:10.1093/ptep/ptac167
- Gravitational wave physics and astronomy in the nascent era, Progress of Theoretical and Experimental Physics, Volume 2023 (2023) no. 10 | DOI:10.1093/ptep/ptab042
- Jetted and Turbulent Stellar Deaths: New LVK-detectable Gravitational-wave Sources, The Astrophysical Journal Letters, Volume 951 (2023) no. 2, p. L30 | DOI:10.3847/2041-8213/ace03a
- Gravitational Waves from Core-Collapse Supernovae, Handbook of Gravitational Wave Astronomy (2022), p. 909 | DOI:10.1007/978-981-16-4306-4_21
- Three-dimensional simulation of a core-collapse supernova for a binary star progenitor of SN 1987A, Monthly Notices of the Royal Astronomical Society, Volume 514 (2022) no. 3, p. 3941 | DOI:10.1093/mnras/stac1586
- Magnetic support for neutrino-driven explosion of 3D non-rotating core-collapse supernova models, Monthly Notices of the Royal Astronomical Society, Volume 516 (2022) no. 2, p. 1752 | DOI:10.1093/mnras/stac2335
- Gravitational wave signals in the deci-Hz range from neutrinos during the protoneutron star cooling phase, Physical Review D, Volume 105 (2022) no. 12 | DOI:10.1103/physrevd.105.123028
- Field excitation in fuzzy dark matter near a strong gravitational wave source, Physical Review D, Volume 105 (2022) no. 2 | DOI:10.1103/physrevd.105.024039
- Boosting the sensitivity of high-frequency gravitational wave detectors using PT -symmetry, Physical Review D, Volume 106 (2022) no. 8 | DOI:10.1103/physrevd.106.082002
- Constraining the Time of Gravitational-wave Emission from Core-collapse Supernovae, The Astrophysical Journal, Volume 931 (2022) no. 2, p. 159 | DOI:10.3847/1538-4357/ac5631
- Black Hole Hyperaccretion in Collapsars: A Review, Universe, Volume 8 (2022) no. 10, p. 529 | DOI:10.3390/universe8100529
- Gravitational Waves from Core-Collapse Supernovae, Handbook of Gravitational Wave Astronomy (2021), p. 1 | DOI:10.1007/978-981-15-4702-7_21-1
- Insights into non-axisymmetric instabilities in three-dimensional rotating supernova models with neutrino and gravitational-wave signatures, Monthly Notices of the Royal Astronomical Society, Volume 508 (2021) no. 1, p. 966 | DOI:10.1093/mnras/stab2607
- SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy, New Journal of Physics, Volume 23 (2021) no. 3, p. 031201 | DOI:10.1088/1367-2630/abde33
- Enhancing interferometer sensitivity without sacrificing bandwidth and stability: Beyond single-mode and resolved-sideband approximation, Physical Review D, Volume 103 (2021) no. 12 | DOI:10.1103/physrevd.103.122001
- Application of the Hilbert-Huang transform for analyzing standing-accretion-shock-instability induced gravitational waves in a core-collapse supernova, Physical Review D, Volume 104 (2021) no. 8 | DOI:10.1103/physrevd.104.084063
- Overview of KAGRA: KAGRA science, Progress of Theoretical and Experimental Physics, Volume 2021 (2021) no. 5 | DOI:10.1093/ptep/ptaa120
- Equation of state and neutrino transfer in supernovae and neutron stars, The European Physical Journal A, Volume 57 (2021) no. 12 | DOI:10.1140/epja/s10050-021-00644-z
- Hydrodynamics of core-collapse supernovae and their progenitors, Living Reviews in Computational Astrophysics, Volume 6 (2020) no. 1 | DOI:10.1007/s41115-020-0008-5
- Prospects for improving the sensitivity of the cryogenic gravitational wave detector KAGRA, Physical Review D, Volume 102 (2020) no. 2 | DOI:10.1103/physrevd.102.022008
- Gravitational-wave signal of a core-collapse supernova explosion of a 15 M⊙ star, Physical Review D, Volume 102 (2020) no. 2 | DOI:10.1103/physrevd.102.023027
- Detection and classification of supernova gravitational wave signals: A deep learning approach, Physical Review D, Volume 102 (2020) no. 4 | DOI:10.1103/physrevd.102.043022
- Black Hole Hyperaccretion in Collapsars. II. Gravitational Waves, The Astrophysical Journal, Volume 889 (2020) no. 2, p. 73 | DOI:10.3847/1538-4357/ab6325
- Modern General Relativity, 2019 | DOI:10.1017/9781108181938
- Gravitational waves from 3D core-collapse supernova models: The impact of moderate progenitor rotation, Monthly Notices of the Royal Astronomical Society, Volume 486 (2019) no. 2, p. 2238 | DOI:10.1093/mnras/stz990
- Gravitational wave emission from 3D explosion models of core-collapse supernovae with low and normal explosion energies, Monthly Notices of the Royal Astronomical Society, Volume 487 (2019) no. 1, p. 1178 | DOI:10.1093/mnras/stz1304
- Characterization of numerical relativity waveforms of eccentric binary black hole mergers, Physical Review D, Volume 100 (2019) no. 4 | DOI:10.1103/physrevd.100.044016
- Physics of eccentric binary black hole mergers: A numerical relativity perspective, Physical Review D, Volume 100 (2019) no. 6 | DOI:10.1103/physrevd.100.064003
- Dependence of the outer boundary condition on protoneutron star asteroseismology with gravitational-wave signatures, Physical Review D, Volume 99 (2019) no. 12 | DOI:10.1103/physrevd.99.123024
- Non-exploding and exploding core-collapse supernova models and the multimessenger predictions, Proceedings of the International Astronomical Union, Volume 15 (2019) no. S350, p. 267 | DOI:10.1017/s1743921319006458
- Stars and Stellar Processes, 2019 | DOI:10.1017/9781108181914
- Characterizing the Gravitational Wave Signal from Core-collapse Supernovae, The Astrophysical Journal Letters, Volume 876 (2019) no. 1, p. L9 | DOI:10.3847/2041-8213/ab191a
- What can be learned from a future supernova neutrino detection?, Journal of Physics G: Nuclear and Particle Physics, Volume 45 (2018) no. 4, p. 043002 | DOI:10.1088/1361-6471/aaa90a
- Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙, Monthly Notices of the Royal Astronomical Society, Volume 477 (2018) no. 3, p. 3091 | DOI:10.1093/mnras/sty809
- Anisotropic emission of neutrino and gravitational-wave signals from rapidly rotating core-collapse supernovae, Monthly Notices of the Royal Astronomical Society: Letters, Volume 475 (2018) no. 1, p. L91 | DOI:10.1093/mnrasl/sly008
- Circular polarization of gravitational waves from non-rotating supernova cores: a new probe into the pre-explosion hydrodynamics, Monthly Notices of the Royal Astronomical Society: Letters, Volume 477 (2018) no. 1, p. L96 | DOI:10.1093/mnrasl/sly055
- Gravitational Physics: From Quantum to Waves, Multiple Messengers and Challenges in Astroparticle Physics (2018), p. 357 | DOI:10.1007/978-3-319-65425-6_5
- The Gravitational Wave Signal from Core-collapse Supernovae, The Astrophysical Journal, Volume 861 (2018) no. 1, p. 10 | DOI:10.3847/1538-4357/aac5f1
- A Linear and Quadratic Time–Frequency Analysis of Gravitational Waves from Core-collapse Supernovae, The Astrophysical Journal, Volume 867 (2018) no. 2, p. 126 | DOI:10.3847/1538-4357/aae57b
- Gravitational Waves from Core-Collapse Supernovae, Handbook of Supernovae (2017), p. 1671 | DOI:10.1007/978-3-319-21846-5_9
- Detecting Gravitational Waves from Supernovae with Advanced LIGO, Handbook of Supernovae (2017), p. 1699 | DOI:10.1007/978-3-319-21846-5_10
- Equation of state effects on gravitational waves from rotating core collapse, Physical Review D, Volume 95 (2017) no. 6 | DOI:10.1103/physrevd.95.063019
- Evolution of a proto-neutron star with a nuclear many-body equation of state: Neutrino luminosity and gravitational wave frequencies, Physical Review D, Volume 96 (2017) no. 4 | DOI:10.1103/physrevd.96.043015
- Probing mass-radius relation of protoneutron stars from gravitational-wave asteroseismology, Physical Review D, Volume 96 (2017) no. 6 | DOI:10.1103/physrevd.96.063005
- , Proceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC2016) (2017) | DOI:10.7566/jpscp.14.020109
- Multimessenger Predictions from 3D General-Relativistic Core-Collapse Supernovae Models, Proceedings of the International Astronomical Union, Volume 12 (2017) no. S331, p. 329 | DOI:10.1017/s174392131700446x
- Correlated Signatures of Gravitational-wave and Neutrino Emission in Three-dimensional General-relativistic Core-collapse Supernova Simulations, The Astrophysical Journal, Volume 851 (2017) no. 1, p. 62 | DOI:10.3847/1538-4357/aa988d
- Gravitational Waves from Core-Collapse Supernovae, Handbook of Supernovae (2016), p. 1 | DOI:10.1007/978-3-319-20794-0_9-1
- Detecting Gravitational Waves from Supernovae with Advanced LIGO, Handbook of Supernovae (2016), p. 1 | DOI:10.1007/978-3-319-20794-0_10-1
- Methodological studies on the search for Gravitational Waves and Neutrinos from Type II Supernovae, Journal of Physics: Conference Series, Volume 689 (2016), p. 012010 | DOI:10.1088/1742-6596/689/1/012010
- Methodology of the joint search for Gravitational Wave and Low Energy Neutrino signals from Core-Collapse Supernovae, Journal of Physics: Conference Series, Volume 718 (2016), p. 072001 | DOI:10.1088/1742-6596/718/7/072001
- Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies, Monthly Notices of the Royal Astronomical Society, Volume 461 (2016) no. 3, p. 3296 | DOI:10.1093/mnras/stw1453
- General relativity and cosmic structure formation, Nature Physics, Volume 12 (2016) no. 4, p. 346 | DOI:10.1038/nphys3673
- All-sky search for long-duration gravitational wave transients with initial LIGO, Physical Review D, Volume 93 (2016) no. 4 | DOI:10.1103/physrevd.93.042005
- Observing gravitational waves from core-collapse supernovae in the advanced detector era, Physical Review D, Volume 93 (2016) no. 4 | DOI:10.1103/physrevd.93.042002
- First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors, Physical Review D, Volume 94 (2016) no. 10 | DOI:10.1103/physrevd.94.102001
- Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation, Physical Review Letters, Volume 116 (2016) no. 15 | DOI:10.1103/physrevlett.116.151102
- A NEW GRAVITATIONAL-WAVE SIGNATURE FROM STANDING ACCRETION SHOCK INSTABILITY IN SUPERNOVAE, The Astrophysical Journal Letters, Volume 829 (2016) no. 1, p. L14 | DOI:10.3847/2041-8205/829/1/l14
- Gravitational waves: Classification, methods of detection, sensitivities and sources, International Journal of Modern Physics D, Volume 24 (2015) no. 14, p. 1530031 | DOI:10.1142/s0218271815300311
- Supernova seismology: gravitational wave signatures of rapidly rotating core collapse, Monthly Notices of the Royal Astronomical Society, Volume 450 (2015) no. 1, p. 414 | DOI:10.1093/mnras/stv698
- Coherent network analysis of gravitational waves from three-dimensional core-collapse supernova models, Physical Review D, Volume 92 (2015) no. 12 | DOI:10.1103/physrevd.92.122001
- Gravitational wave signatures ofab initiotwo-dimensional core collapse supernova explosion models for12–25 M⊙stars, Physical Review D, Volume 92 (2015) no. 8 | DOI:10.1103/physrevd.92.084040
- A fixed false alarm probability figure of merit for gravitational wave detectors, Classical and Quantum Gravity, Volume 31 (2014) no. 8, p. 085004 | DOI:10.1088/0264-9381/31/8/085004
- Summary of session C6: Q A—everything you wanted to know about gravitational waves but were afraid to ask, General Relativity and Gravitation, Volume 46 (2014) no. 10 | DOI:10.1007/s10714-014-1782-3
- Observational results from the LIGO and Virgo detectors, General Relativity and Gravitation, Volume 46 (2014) no. 10 | DOI:10.1007/s10714-014-1763-6
- Gravitational wave signatures from low-mode spiral instabilities in rapidly rotating supernova cores, Physical Review D, Volume 89 (2014) no. 4 | DOI:10.1103/physrevd.89.044011
- Gadolinium in water Cherenkov detectors improves detection of supernovaνe, Physical Review D, Volume 89 (2014) no. 6 | DOI:10.1103/physrevd.89.063007
- Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube, Physical Review D, Volume 90 (2014) no. 10 | DOI:10.1103/physrevd.90.102002
- Multivariate regression analysis of gravitational waves from rotating core collapse, Physical Review D, Volume 90 (2014) no. 12 | DOI:10.1103/physrevd.90.124026
- Measuring the angular momentum distribution in core-collapse supernova progenitors with gravitational waves, Physical Review D, Volume 90 (2014) no. 4 | DOI:10.1103/physrevd.90.044001
- An investigation into surface temperature distributions of high-magnetic-field pulsars, Publications of the Astronomical Society of Japan, Volume 66 (2014) no. 2 | DOI:10.1093/pasj/psu009
- IMPACTS OF ROTATION ON THREE-DIMENSIONAL HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE, The Astrophysical Journal, Volume 793 (2014) no. 1, p. 45 | DOI:10.1088/0004-637x/793/1/45
- A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007, Journal of Cosmology and Astroparticle Physics, Volume 2013 (2013) no. 06, p. 008 | DOI:10.1088/1475-7516/2013/06/008
- Gravitational-wave detection using multivariate analysis, Physical Review D, Volume 88 (2013) no. 6 | DOI:10.1103/physrevd.88.062006
Cité par 85 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier