[Coarsening dans les systèmes non homogènes]
Cet article constitue un bref survol des phénomènes de coarsening qui se produisent dans des systèmes où des inhomogénéités gelées, telles que champs aléatoires, constantes de couplage variables ou lacunes de réseau, détruisent l'homogénéité. Nous discutons la compréhension que l'on a actuellement de ce problème dans les systèmes ferromagnétiques avec un paramètre d'ordre scalaire non conservé, en se concentrant d'abord sur la loi de croissance des domaines ordonnés et sur les propriétés d'échelle.
This article is a brief review of coarsening phenomena occurring in systems where quenched features—such as random field, varying coupling constants or lattice vacancies—spoil homogeneity. We discuss the current understanding of the problem in ferromagnetic systems with a non-conserved scalar order parameter by focusing primarily on the form of the growth law of the ordered domains and on the scaling properties.
Mots-clés : Coarsening, Échelle, Désordre
Federico Corberi 1
@article{CRPHYS_2015__16_3_332_0, author = {Federico Corberi}, title = {Coarsening in inhomogeneous systems}, journal = {Comptes Rendus. Physique}, pages = {332--342}, publisher = {Elsevier}, volume = {16}, number = {3}, year = {2015}, doi = {10.1016/j.crhy.2015.03.019}, language = {en}, }
Federico Corberi. Coarsening in inhomogeneous systems. Comptes Rendus. Physique, Coarsening dynamics / Dynamique de coarsening, Volume 16 (2015) no. 3, pp. 332-342. doi : 10.1016/j.crhy.2015.03.019. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.019/
[1] Adv. Phys. (S. Puri; V. Wadhawan; L. Berthier; G. Biroli; J.-P. Bouchaud; L. Cipeletti; W. van Saarloos, eds.), Aging in domain growth, Kinetics of Phase TransitionsGrowing length scales in aging systems, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, 43, CRC Press, Boca Raton, FL, USA, 1994, p. 357 (For reviews see)
[2] Int. J. Mod. Phys. B, Spin Glasses and Random Fields, 36 (2003), p. R181 | arXiv
[3] Phys. Rev. B, 63 (2001), p. 064104
[4] Phys. Rev. Lett., 64 (1990), p. 1266
[5] Phys. Rev. Lett., 70 (1993), p. 2340
[6] Phys. Rev. Lett., 82 (1999), p. 1716
[7] Phys. Rev. B, 37 (1988), p. 9481
[8] Phys. Rev. B, 32 (1985), p. 3014
[9] Phys. Rev. E, 48 (1993), p. R25(R)
[10] Physica A, 38 (1988), p. 373 (for an explanation of the super universality concept see Sect. 5.2 and references quoted therein)
[11] J. Stat. Mech., 71 (1993), p. 3501
[12] Phys. Rev. E, 68 (2004), p. 881
[13] Physica A, 24 (1991), p. L1087
[14] Europhys. Lett., 82 (2008), p. 10001
[15] Phys. Rev. E, 81 (2010), p. 021129
[16] Phys. Rev. E, 52 (1995), p. 4632
[17] Europhys. Lett., 90 (2010), p. 46006
[18] Phys. Rev. Lett., 64 (2001), p. 066107
[19] Phys. Rev. E, 65 (2002), p. 046114
[20] J. Stat. Mech. Theory Exp. (2011), p. P03016
[21] Phys. Rev. E, 85 (2012), p. 021141
[22] Theory Probab. Appl., 27 (1982), p. 256
[23] Phys. Rev. E, 87 (2013), p. 032160
[24] J. Phys. IV, 75 (2010), p. P12024
[25] J. Phys. A, 26 (1993), p. 2777
[26] Phys. Rev. E, 87 (2013), p. 022121
[27] Phys. Rev. E, 75 (2007), p. 030104(R)
[28] Phys. Rev. B, 82 (2010), p. 144406
[29] Phys. Rev. E, 88 (2013), p. 042129
[30] Phys. Rep., Introduction to Percolation Theory, 54, Taylor and Francis, London, 1979, p. 1
[31] Phys. Rev. Lett., 54 (1985), p. 2708
[32] Phys. Rev. Lett., 52 (1984), p. 1543
[33] Phys. Rev. Lett., 55 (1985), p. 2923
[34] Phys. Rev. B, 76 (2006), p. 561
[35] Topics in coarsening phenomena, Phys. Rev. B, Volume 80 (2009), p. 094201 | arXiv
[36] Phys. Rev. E (2015) (submitted)
[37] J. Phys. A, 56 (1986), p. 1601
- Magnetic and dielectric studies of the charge density wave formation in quasi-one-dimensional material K0.3MoO3, Journal of Physics and Chemistry of Solids, Volume 199 (2025) | DOI:10.1016/j.jpcs.2024.112520
- General properties of the response function in a class of solvable non-equilibrium models, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 43 | DOI:10.1088/1751-8121/ad7faa
- Machine learning force-field model for kinetic Monte Carlo simulations of itinerant Ising magnets, arXiv (2024) | DOI:10.48550/arxiv.2411.19780 | arXiv:2411.19780
- Coarsening dynamics of Ising-nematic order in a frustrated Heisenberg antiferromagnet, arXiv (2024) | DOI:10.48550/arxiv.2412.14028 | arXiv:2412.14028
- Machine learning for phase ordering dynamics of charge density waves, Physical Review B, Volume 108 (2023) no. 1 | DOI:10.1103/physrevb.108.014301
- Asymptotic states of Ising ferromagnets with long-range interactions, Physical Review E, Volume 105 (2022) no. 3 | DOI:10.1103/physreve.105.034131
- Anomalous phase separation in a correlated electron system: Machine-learning–enabled large-scale kinetic Monte Carlo simulations, Proceedings of the National Academy of Sciences, Volume 119 (2022) no. 18 | DOI:10.1073/pnas.2119957119
- Low-temperature domain-wall freezing and nonequilibrium dynamics in the transverse-field Ising model material CoNb2O6, Physical Review B, Volume 104 (2021) no. 21 | DOI:10.1103/physrevb.104.214424
- Kinetics of the two-dimensional long-range Ising model at low temperatures, Physical Review E, Volume 103 (2021) no. 1 | DOI:10.1103/physreve.103.012108
- Growth kinetics and aging phenomena in a frustrated system, The European Physical Journal B, Volume 93 (2020) no. 5 | DOI:10.1140/epjb/e2020-100598-3
- Probability Distributions with Singularities, Entropy, Volume 21 (2019) no. 3 | DOI:10.3390/e21030312
- Dynamics of fluctuations in the Gaussian model with conserved dynamics, Journal of Statistical Mechanics: Theory and Experiment, Volume 10 (2019) no. 10, p. 104001 | DOI:10.1088/1742-5468/ab3bc7
- Fractal character of the phase ordering kinetics of a diluted ferromagnet, Journal of Statistical Mechanics: Theory and Experiment, Volume 4 (2019) no. 4, p. 043203 | DOI:10.1088/1742-5468/ab02ee
- One Dimensional Phase-Ordering in the Ising Model with Space Decaying Interactions, Journal of Statistical Physics, Volume 176 (2019) no. 3, pp. 510-540 | DOI:10.1007/s10955-019-02313-4
- , Journal of Physics: Conference Series, Volume 956 (2018) no. 1 | DOI:10.1088/1742-6596/956/1/012018
- Effective mobility and diffusivity in coarsening processes, Europhysics Letters, Volume 119 (2017) no. 2, p. 26005 | DOI:10.1209/0295-5075/119/26005
- Coarsening and percolation in a disordered ferromagnet, Physical Review E, Volume 95 (2017) no. 2 | DOI:10.1103/physreve.95.022101
- Development and regression of a large fluctuation, Physical Review E, Volume 95 (2017) no. 3 | DOI:10.1103/physreve.95.032136
- Equilibrium structure and off-equilibrium kinetics of a magnet with tunable frustration, Physical Review E, Volume 95 (2017) no. 6 | DOI:10.1103/physreve.95.062136
- On a relation between roughening and coarsening, EPL (Europhysics Letters), Volume 116 (2016) no. 1, p. 10006 | DOI:10.1209/0295-5075/116/10006
- Roughening of an interface in a system with surface or bulk disorder, Journal of Physics A: Mathematical and Theoretical, Volume 49 (2016) no. 18 | DOI:10.1088/1751-8113/49/18/185001
- Phase ordering in 3d disordered systems, Volume 2015 (2015) no. 10 | DOI:10.1088/1742-5468/2015/10/p10001
Cité par 22 documents. Sources : Crossref, NASA ADS
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier