We give a brief review of the history of inflationary theory and then concentrate on the recently discovered set of inflationary models called cosmological α-attractors. These models provide an excellent fit to the latest observational data. Their predictions and are very robust with respect to the modifications of the inflaton potential. An intriguing interpretation of α-attractors is based on a geometric moduli space with a boundary: a Poincaré disk model of a hyperbolic geometry with the radius , beautifully represented by the Escher's picture Circle Limit IV. In such models, the amplitude of the gravitational waves is proportional to the square of the radius of the Poincaré disk.
Après une brève revue de l'histoire de la théorie de l'inflation, cet article introduit une classe de modèles inflationaires récemment découverte : les << attracteurs de type α >>. Ces modèles offrent un très bon accord avec les données observationnelles. Leur prédiction sur l'indice spectral et le rapport tenseur–scalaire, et , est très robuste vis-à-vis d'une modification du potentiel de l'inflaton. Une interprétation surprenante de ces attracteurs α repose sur la géométrie des espaces de modules avec bord : celle d'un disque hyperbolique de Poincaré de rayon , merveilleusement représenté par le dessin Circle Limit IV d'Escher. Dans ces modèles, l'amplitude des ondes gravitationnelles est proportionnelle au carré du rayon du disque de Poincaré.
Mots-clés : Inflation, Supergravité, Géométrie
Renata Kallosh 1; Andrei Linde 1
@article{CRPHYS_2015__16_10_914_0, author = {Renata Kallosh and Andrei Linde}, title = {Escher in the {Sky}}, journal = {Comptes Rendus. Physique}, pages = {914--927}, publisher = {Elsevier}, volume = {16}, number = {10}, year = {2015}, doi = {10.1016/j.crhy.2015.07.004}, language = {en}, }
Renata Kallosh; Andrei Linde. Escher in the Sky. Comptes Rendus. Physique, Cosmic inflation / Inflation cosmique, Volume 16 (2015) no. 10, pp. 914-927. doi : 10.1016/j.crhy.2015.07.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.07.004/
[1] A joint analysis of BICEP2/Keck array and Planck data | arXiv
[2] Planck 2015, XX: constraints on inflation | arXiv
[3] Chaotic inflation, Phys. Lett. B, Volume 129 (1983), p. 177
[4] (Contemp. Concepts Phys.), Volume vol. 5, Harwood, Chur, Switzerland (1990), p. 1 | arXiv
[5] A new type of isotropic cosmological models without singularity, Phys. Lett. B, Volume 91 (1980), p. 99
[6] Quantum fluctuation and nonsingular universe, JETP Lett., Volume 33 (1981), p. 532 (in Russian) [Pis'ma Zh. Eksp. Teor. Fiz. 33, 549 (1981)]
[7] The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D, Volume 23 (1981), p. 347
[8] A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B, Volume 108 (1982), p. 389
[9] Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett., Volume 48 (1982), p. 1220
[10] Gravitational instability of the universe filled with a scalar field, JETP Lett., Volume 117 (1982), p. 175 [Pis'ma Zh. Eksp. Teor. Fiz. 41, 402 (1985)]
[11] A Brief History of Time, Bantam Books, NY, 1988
[12] Primordial inflation without primordial monopoles, Phys. Lett. B, Volume 37 (1983), p. 606 (in Russian) [JETP Lett. 37 (1983) 724]
[13] Hilltop inflation, J. Cosmol. Astropart. Phys., Volume 0507 (2005) | arXiv
[14] Chaotic inflation in supergravity, Phys. Lett. B, Volume 59 (1984), p. 930 [Zh. Eksp. Teor. Fiz. 86, 1594 (1984)]
[15] The perturbation spectrum evolving from a nonsingular initially De-Sitter cosmology and the microwave background anisotropy, Sov. Astron. Lett., Volume 9 (1983), p. 302
[16] Inflationary universe generated by the combined action of a scalar field and gravitational vacuum polarization, Phys. Lett. B, Volume 157 (1985), p. 361
[17] Fourth order gravity as general relativity plus matter, Phys. Lett. B, Volume 145 (1984), p. 176
[18] Natural inflation with pseudo-Nambu–Goldstone bosons, Phys. Rev. Lett., Volume 65 (1990), p. 3233
[19] Hybrid inflation, Phys. Rev. D, Volume 259 (1991), p. 38 | arXiv
[20] Quantum theory of gravity, 1: the canonical theory, Phys. Rev., Volume 160 (1967), p. 1113
[21] Creation of universes from nothing, Phys. Lett. B, Volume 117 (1982), p. 25
[22] The inflationary universe, Rep. Prog. Phys., Volume 47 (1984), p. 925
[23] Quantum creation of a universe in a nontrivial topology, Sov. Astron. Lett., Volume 10 (1984), p. 135
[24] Quantum creation of universes, Phys. Rev. D, Volume 30 (1984), p. 509
[25] Creation of a compact topologically nontrivial inflationary universe, J. Cosmol. Astropart. Phys., Volume 0410 (2004) | arXiv
[26] The birth of inflationary universes, Phys. Rev. D, Volume 27 (1983), p. 2848
[27] Eternally existing self-reproducing chaotic inflationary universe, Phys. Lett. B, Volume 175 (1986), p. 395
[28] Eternal chaotic inflation, Mod. Phys. Lett. A, Volume 1 (1986), p. 81
[29] From the Big Bang theory to the theory of a stationary universe, Phys. Rev. D, Volume 49 (1994), p. 1783 | arXiv
[30] Quantization of four form fluxes and dynamical neutralization of the cosmological constant, J. High Energy Phys., Volume 0006 (2000) | arXiv
[31] De Sitter vacua in string theory, Phys. Rev. D, Volume 68 (2003) | arXiv
[32] The statistics of string/M theory vacua, J. High Energy Phys., Volume 0305 (2003) | arXiv
[33] The Anthropic landscape of string theory (Bernard Carr, ed.), Universe or Multiverse?, 2007, pp. 247-266 | arXiv
[34] Multi-field conformal cosmological attractors, J. Cosmol. Astropart. Phys., Volume 1307 (2013) | arXiv
[35] On the gauged Kahler isometry in minimal supergravity models of inflation, Fortschr. Phys., Volume 88 (2013) no. 8, p. 277 | arXiv
[36] Large field inflation and double α-attractors, J. High Energy Phys., Volume 1311 (2013) | arXiv
[37] Cosmological attractor models and higher curvature supergravity, J. High Energy Phys., Volume 1405 (2014) | arXiv
[38] The unity of cosmological attractors, Phys. Rev. Lett., Volume 114 (2015) no. 14 | arXiv
[39] Does the first chaotic inflation model in supergravity provide the best fit to the Planck data?, J. Cosmol. Astropart. Phys., Volume 1502 (2015) no. 02 | arXiv
[40] Planck, LHC, and α-attractors | arXiv
[41] The standard model Higgs boson as the inflaton, Phys. Lett. B, Volume 40 (1989), p. 1753 | arXiv
[42] Holonomic quantum field theory of bosons in the Poincare disk and the zero curvature limit, Nucl. Phys. B, Volume 340 (1984), p. 568
[43] Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D, Volume 77 (2008) | arXiv
[44] The Cosmic Landscape: String Theory and the Illusion of Intelligent Design, Little, Brown and Company, 2005
[45] J.J. Carrasco, R. Kallosh, A. Linde, in preparation.
[46] SU(4) invariant supergravity theory, Phys. Lett. B, Volume 74 (1978), p. 61
[47] Matter coupling in supergravity, Nucl. Phys. B, Volume 182 (1981), p. 173
[48] Conjecture on hidden superconformal symmetry of supergravity, Phys. Rev. D, Volume 87 (2013) no. 2 | arXiv
[49] supergravity, Nucl. Phys. B, Volume 159 (1979), p. 141
[50] Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal., Volume 9 (1998) no. 6, pp. 641-651
[51] Cosmological attractors from α-scale supergravity | arXiv
[52] Single-field α-attractors | arXiv
Cited by Sources:
Comments - Policy