Cultural heritage materials are often complex and heterogeneous, with a multi-scale architecture. Phases from a variety of crystalline forms co-exist in a wide grain size distribution, with each of these phases keeping in their structural arrangement a memory of the transformations that occurred to the material. Over the last two decades, X-ray diffraction has been applied successfully to the study of cultural heritage materials, with the use of synchrotron facilities offering new possibilities to describe the structural features of such complex materials. The long-range and/or short-range organization of the different crystallographic phases as well as their global position/dispersion in the material are closely related to the properties of the material (optical, mechanical…), its manufacturing process, functionality, or long-term conservation. In this paper, possible diffraction setups and data collection strategies are discussed in order to retrieve adequate data from crystalline and amorphous phases and to take into account single-crystal contributions.
Les matériaux du patrimoine sont souvent complexes et hétérogènes, avec une architecture multi-échelle. Plusieurs types de phases de cristallinité et de taille de grains variables coexistent, chacune d'entre elles préservant au sein de leur arrangement structural la mémoire des transformations ayant affecté le matériau au cours du temps. La diffraction des rayons X a été largement utilisée durant ces vingt dernières années pour étudier les matériaux du patrimoine, l'utilisation du rayonnement synchrotron offrant de nouvelles possibilités pour décrire leurs composantes structurales. Les propriétés de ces matériaux (optiques, mécaniques…), les étapes de leur élaboration, leur utilisation et leur conservation à long terme sont intimement liées à l'organisation à longue et courte distances des différentes phases cristallographiques qui les composent, ainsi qu'à leur position globale et/ou à leur dispersion. Dans cet article, plusieurs dispositifs expérimentaux et stratégies de collecte de données sont présentés, l'idée étant de pouvoir prendre en compte à la fois les phases cristallines (poudre et monocristaux) et amorphes.
Mot clés : Patrimoine culturel, Matériaux hétérogènes, Diffraction des rayons X, Phases cristallines, Phases amorphes, Synchrotron
Catherine Dejoie 1; Pierre-Olivier Autran 1, 2; Pierre Bordet 2; Andy N. Fitch 1; Pauline Martinetto 2; Philippe Sciau 3; Nobumichi Tamura 4; Jonathan Wright 1
@article{CRPHYS_2018__19_7_553_0, author = {Catherine Dejoie and Pierre-Olivier Autran and Pierre Bordet and Andy N. Fitch and Pauline Martinetto and Philippe Sciau and Nobumichi Tamura and Jonathan Wright}, title = {X-ray diffraction and heterogeneous materials: {An} adaptive crystallography approach}, journal = {Comptes Rendus. Physique}, pages = {553--560}, publisher = {Elsevier}, volume = {19}, number = {7}, year = {2018}, doi = {10.1016/j.crhy.2018.09.001}, language = {en}, }
TY - JOUR AU - Catherine Dejoie AU - Pierre-Olivier Autran AU - Pierre Bordet AU - Andy N. Fitch AU - Pauline Martinetto AU - Philippe Sciau AU - Nobumichi Tamura AU - Jonathan Wright TI - X-ray diffraction and heterogeneous materials: An adaptive crystallography approach JO - Comptes Rendus. Physique PY - 2018 SP - 553 EP - 560 VL - 19 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2018.09.001 LA - en ID - CRPHYS_2018__19_7_553_0 ER -
%0 Journal Article %A Catherine Dejoie %A Pierre-Olivier Autran %A Pierre Bordet %A Andy N. Fitch %A Pauline Martinetto %A Philippe Sciau %A Nobumichi Tamura %A Jonathan Wright %T X-ray diffraction and heterogeneous materials: An adaptive crystallography approach %J Comptes Rendus. Physique %D 2018 %P 553-560 %V 19 %N 7 %I Elsevier %R 10.1016/j.crhy.2018.09.001 %G en %F CRPHYS_2018__19_7_553_0
Catherine Dejoie; Pierre-Olivier Autran; Pierre Bordet; Andy N. Fitch; Pauline Martinetto; Philippe Sciau; Nobumichi Tamura; Jonathan Wright. X-ray diffraction and heterogeneous materials: An adaptive crystallography approach. Comptes Rendus. Physique, Volume 19 (2018) no. 7, pp. 553-560. doi : 10.1016/j.crhy.2018.09.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.09.001/
[1] Learning from the past: Rare ε-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares, Sci. Rep., Volume 4 (2014) no. 4941, pp. 1-8
[2] Magnetoelectric coupling in ε-Fe2O3 nanoparticles, Nanotechnology, Volume 17 (2006), pp. 687-691
[3] Provenance study of rubies from a Parthian statuette by PIXE analysis, Nucl. Instr. Meth. Phys. Res. B, Volume 136–138 (1998), pp. 846-850
[4] Gold cultural heritage objects: a review of studies of provenance and manufacturing technologies, Meas. Sci. Technol., Volume 14 (2003), pp. 1527-1537
[5] Obsidian provenance studies in archaeology: a comparison between PIXE, ICP-AES and ICP-MS, Nucl. Instr. Meth. Phys. Res. B, Volume 240 (2005), pp. 583-588
[6] Microstructural and microchemical characterization of roman period terra sigillate slips from archeological sites in southern France, J. Am. Ceram. Soc., Volume 89 (2006), pp. 1053-1058
[7] Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials, J. Appl. Crystallogr., Volume 48 (2015), pp. 1522-1533
[8] Lead soaps in paintings: friends or foes?, Stud. Conserv., Volume 62 (2017), pp. 2-23
[9] Hybrid materials. Functional properties. From Maya Blue to 21st century materials, New J. Chem., Volume 29 (2005), pp. 57-58
[10] Crystal structure of an indigo@ silicalite hybrid related to the ancient Maya blue pigment, J. Phys. Chem. C, Volume 118 (2014), pp. 28032-28042
[11] Non toxic hybrid pigments: sequestering betanidin chromophores on inorganic matrices, Appl. Clay Sci., Volume 42 (2009), pp. 478-482
[12] Photosensitized reduction of water to hydrogen using novel Maya blue-like organic–inorganic hybrid material, J. Colloid Interface Sci., Volume 333 (2008), pp. 285-293
[13] Science for the cultural heritage: the contribution of X-ray diffraction, Rend. Lincei, Sci. Fis. Nat., Volume 24 (2013), pp. 55-62
[14] Non-destructive synchrotron X-ray diffraction mapping of a Roman painting, Appl. Phys. A, Volume 81 (2005), pp. 663-667
[15] Classification of lead white pigments using synchrotron radiation micro X-ray diffraction, Appl. Phys. A, Volume 89 (2007), pp. 825-832
[16] Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction, Eur. J. Mineral., Volume 15 (2003), pp. 21-33
[17] Structure determination of the blue mineral pigment aerinite from synchrotron powder diffraction data: the solution of an old riddle, Eur. J. Mineral., Volume 16 (2004), pp. 127-134
[18] Texture analysis from synchrotron diffraction images with the Rietveld method: dinosaur tendon and salmon scale, J. Synchrotron Radiat., Volume 12 (2005), pp. 354-360
[19] Revealing the powdering methods of black makeup in Ancient Egypt by fitting microstructure-based Fourier coefficients to the whole X-ray diffraction profiles of galena, J. Appl. Phys., Volume 91 (2002), pp. 2455-2465
[20] MicroRaman and infrared spectroscopic characterization of ancient cosmetics, Vib. Spectrosc., Volume 47 (2008), pp. 82-90
[21] Relationship between the synthesis of Prussian blue pigments, their color, physical properties, and their behavior in paint layers, J. Phys. Chem. C, Volume 117 (2013), pp. 9693-9712
[22] Identifying and quantifying amorphous and crystalline content in complex powdered samples: application to archaeological carbon blacks, J. Appl. Crystallogr., Volume 49 (2016), pp. 585-593
[23] Probing the structure of heterogeneous diluted materials by diffraction tomography, Nat. Mater., Volume 7 (2008), pp. 468-472
[24] Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography, Herit. Sci., Volume 2 (2014), pp. 1-11
[25] Micro X-ray diffraction and fluorescence tomography for the study of multilayered automotive paints, Surf. Interface Anal., Volume 42 (2010), pp. 411-418
[26] Plumbonacrite identified by X-ray powder diffraction tomography as a missing link during degradation of red lead in a Van Gogh painting, Angew. Chem., Volume 127 (2015), pp. 3678-3681
[27] Nine-crystal multianalyzer stage for high-resolution powder diffraction between 6 keV and 40 keV, Proc. SPIE, Volume 3448 (1998), pp. 353-361
[28] The high resolution powder diffraction beam line at ESRF, J. Res. Natl. Inst. Stand. Technol., Volume 109 (2004), pp. 133-142
[29] Combining a nine-crystal multi-analyzer stage with a 2-dimensional detector for high-resolution powder X-ray diffraction, J. Appl. Crystallogr. (2018) (submitted for publication)
[30] Synchrotron X-radiation protein crystallography: instrumentation, methods and applications, Rep. Prog. Phys., Volume 47 (1984), pp. 1403-1497
[31] Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films, J. Synchrotron Radiat., Volume 10 (2003), pp. 137-143
[32] Quantitative microstructural imaging by scanning Laue X-ray micro-and nanodiffraction, Mater. Res. Soc. Bull., Volume 41 (2016), pp. 445-453
[33] Can Laue microdiffraction be used to solve and refine complex inorganic structures?, J. Appl. Crystallogr., Volume 46 (2013), pp. 1805-1816
[34] Evidence for residual elastic strain in deformed natural quartz, Am. Mineral., Volume 94 (2009), pp. 1059-1062
[35] Unambiguous indexing of trigonal crystals from white-beam Laue diffraction patterns: application to Dauphiné twinning and lattice stress mapping in deformed quartz, J. Appl. Crystallogr., Volume 45 (2012), pp. 982-989
[36] Influence of Taoism on the invention of the purple pigment used on the Qin terracotta warriors, J. Archaeol. Sci., Volume 34 (2007), pp. 1878-1883
[37] Application of white-beam X-ray microdiffraction for the study of mineralogical phase identification in ancient Egyptian pigments, J. Appl. Crystallogr., Volume 40 (2007), pp. 1089-1096
[38] Science opportunities at the SwissFEL X-ray laser, Chimia, Volume 68 (2014), pp. 73-78
[39] Using a non-monochromatic microbeam for serial snapshot crystallography, J. Appl. Crystallogr., Volume 46 (2013), pp. 791-794
[40] X-ray transfocators: focusing devices based on compound refractive lenses, J. Synchrotron Radiat., Volume 18 (2011), pp. 125-133
Cited by Sources:
Comments - Policy