Comptes Rendus
Application of the pair distribution function analysis for the study of cultural heritage materials
[Application de l'analyse par la fonction de distribution de paires à l'étude des matériaux du patrimoine culturel]
Comptes Rendus. Physique, Physics and arts / Physique et arts, Volume 19 (2018) no. 7, pp. 561-574.

L'étude des objets du patrimoine culturel représente un défi pour la science des matériaux, de par leur complexité intrinsèque ainsi que par leur caractère rare et précieux, qui impose d'utiliser des méthodes non destructives. Une des difficultés majeures rencontrées par les méthodes d'analyse structurale de ces matériaux est la présence de mélanges de phases cristallisées et amorphes, les méthodes classiques de la cristallographie étant mal adaptées à ces dernières. Nous présentons ici la méthode d'analyse par fonction de distribution de paires, qui, sur la base de données de diffraction, permet d'accéder à l'identification, la caractérisation microstructurale et la quantification des phases constituant un mélange complexe, indépendamment de leur caractère amorphe ou cristallisé. Deux exemples récents seront exposés pour illustrer l'utilisation de cette méthode dans le cadre d'études sur les matériaux du patrimoine culturel.

The study of cultural heritage objects represents a challenge for materials sciences, because of their intrinsic complexity as well as because of their rare and precious nature, which requires the use of non-destructive methods. One of the major difficulties encountered by the methods of structural analysis of these materials is the presence of mixtures of crystallized and amorphous phases, the conventional methods of crystallography being poorly adapted to the latter. Here we present the Pair Distribution Function analysis method, which based on diffraction data, allows access to the identification, microstructural characterization and quantification of phases constituting a complex mixture, independently of their amorphous or crystalline character. Two recent examples will be presented to illustrate the use of this method in studies of cultural heritage materials.

Publié le :
DOI : 10.1016/j.crhy.2018.06.001
Keywords: Cultural heritage materials, Pair Distribution Function, Tomography, Synchrotron
Mots-clés : Matériaux du patrimoine, Fonction de distribution de paires, Tomographie, Synchrotron

Pierre Bordet 1

1 Université Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France
@article{CRPHYS_2018__19_7_561_0,
     author = {Pierre Bordet},
     title = {Application of the pair distribution function analysis for the study of cultural heritage materials},
     journal = {Comptes Rendus. Physique},
     pages = {561--574},
     publisher = {Elsevier},
     volume = {19},
     number = {7},
     year = {2018},
     doi = {10.1016/j.crhy.2018.06.001},
     language = {en},
}
TY  - JOUR
AU  - Pierre Bordet
TI  - Application of the pair distribution function analysis for the study of cultural heritage materials
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 561
EP  - 574
VL  - 19
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.06.001
LA  - en
ID  - CRPHYS_2018__19_7_561_0
ER  - 
%0 Journal Article
%A Pierre Bordet
%T Application of the pair distribution function analysis for the study of cultural heritage materials
%J Comptes Rendus. Physique
%D 2018
%P 561-574
%V 19
%N 7
%I Elsevier
%R 10.1016/j.crhy.2018.06.001
%G en
%F CRPHYS_2018__19_7_561_0
Pierre Bordet. Application of the pair distribution function analysis for the study of cultural heritage materials. Comptes Rendus. Physique, Physics and arts / Physique et arts, Volume 19 (2018) no. 7, pp. 561-574. doi : 10.1016/j.crhy.2018.06.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.06.001/

[1] A. Guinier X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, Freeman, San Francisco, CA, USA, 1963

[2] B.E. Warren X-Ray Diffraction, Addison–Wesley Publishing Co., 1969

[3] D.A. Keen J. Appl. Crystallogr., 34 (2001), p. 172

[4] T. Egami; S.J.L. Billinge Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Pergamon, Oxford, UK, 2012

[5] T. Dykhne; R. Taylor; A.J. Florence; S.J.L. Billinge Pharm. Res., 28 (2011), p. 1041

[6] T. Davis; M. Johnson; S.J.L. Billinge Cryst. Growth Des., 13 (2013), p. 4239

[7] C.L. Farrow; P. Juhas; J.W. Liu; D. Bryndin; E.S. Bozin; J. Bloch; T. Proffen; S.J.L. Billinge J. Phys. Condens. Matter, 19 (2007)

[8] J. Rodriguez-Carvajal, A. Bytchkov, Institut Laue-Langevin, Grenoble, France, 2016.

[9] G.F. Rust; J. Weigelt IEEE Trans. Nucl. Sci., 45 (1998) no. 1, p. 75

[10] P. Bleuet; E. Welcomme; E. Dooryhee; J. Susini; J.-L. Hodeau; P. Walter Nat. Mater., 7 (2008) no. 6, p. 468

[11] S.D.M. Jacques; M. di Michiel; S.A.J. Kimber; X. Yang; R.J. Cernik; A.M. Beale; S.J.L. Billinge Nat. Commun., 4 (2013), p. 2536

[12] L. Samain, Université de Liège, Belgium, 2012 (PhD thesis)

[13] J.F. Keggin; F.D. Miles Nature, 137 (1936), p. 577

[14] H.J. Buser; D. Scharzenbach; W. Petter; A. Lusi Inorg. Chem., 16 (1977) no. 11, p. 2704

[15] L. Samain; F. Grandjean; G.J. Long; P. Martinetto; P. Bordet; D. Strivay J. Phys. Chem. C, 117 (2013) no. 19, p. 9693

[16] L. Samain; F. Grandjean; G.J. Long; P. Martinetto; P. Bordet; J. Sanyova; D. Strivay J. Synchrotron Radiat., 20 (2013), p. 460

[17] X. Qiu; J.W. Thompson; S.J.L. Billinge J. Appl. Crystallogr., 37 (2004), p. 678

[18] F. Herren; P. Fischer; A. Ludi; W. Halg Inorg. Chem., 19 (1980), p. 956

[19] R. Dossie The Handmaid to the Arts, J. Nourse, London, 1758

[20] M. Le Pileur d'Apligny Traité des couleurs matérielles et de la manière de colorer relativement aux différents arts et métiers, Saugrain et Lamy, Paris, 1779

[21] E. Murad; J.H. Johnston Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 2 (G.J. Long, ed.), Plenum Press, 1987, p. 507

[22] F.M. Michel; L. Ehm; S.M. Antao; P.L. Lee; P.J. Chupas; G. Liu; D.R. Strongin; M.A. Schoonen; B.L. Phillips; J.B. Parise Science, 316 (2007), p. 1726

[23] S.L. Hwang; P.Y. Shen; H.T. Chu; T.F. Yui Int. Geol. Rev., 48 (2006), p. 754

[24] S. Cersoy; P. Martinetto; P. Bordet; J-L. Hodeau; E. Van Elslande; P. Walter J. Appl. Crystallogr., 49 (2016), p. 585

[25] M. Alvarez-Murga; P. Bleuet; J.-L. Hodeau J. Appl. Crystallogr., 45 (2012), p. 1109

[26] P. Bordet; P. Martinetto Disordered Pharmaceutical Materials (M. Descamps, ed.), Wiley–VCH, Weinheim, Germany, 2016

[27] S. Cersoy; O. Leynaud; M. Alvarez-Murga; P. Martinetto; P. Bordet; N. Boudet; E. Chalmin; G. Castets Hodeau J. Appl. Crystallogr., 48 (2015), p. 159

[28] R.E. Franklin Acta Crystallogr., 3 (1950), p. 107

[29] A. Burian; J.C. Dore Acta Phys. Pol. A, 98 (2000), p. 457

[30] P. Weisbecker; J-M. Leyssale; H.E. Fischer; V. Honkimäki; M. Lalanne; G.L. Vignoles Carbon, 50 (2012) no. 4, p. 1563

[31] K. Pearson Proc. R. Soc. Lond., 58 (1895), p. 240

  • Elodie A. Harbourne; Helena Barker; Quentin Guéroult; John Cattermull; Liam A. V. Nagle-Cocco; Nikolaj Roth; John S. O. Evans; David A. Keen; Andrew L. Goodwin Local Structure and Dynamics in MPt(CN)6 Prussian Blue Analogues, Chemistry of Materials, Volume 36 (2024) no. 11, p. 5796 | DOI:10.1021/acs.chemmater.4c01013
  • Astrid Harth The Study of Pigments in Cultural Heritage: A Review Using Machine Learning, Heritage, Volume 7 (2024) no. 7, p. 3664 | DOI:10.3390/heritage7070174
  • Jean‐Louis HODEAU; Michèle ALVAREZ‐MURGA; Michel ANNE; Pierre‐Olivier AUTRAN; Nils BLANC; Pierre BLEUET; Nathalie BOUDET; Pierre BORDET; Sophie CERSOY; Catherine DEJOIE; Eric DOORYHÉE; Florian KERGOULAY; Olivier LEYNAUD; Pauline MARTINETTO; Alain PRAT; Philippe WALTER Structural Cartography and Tomography by Diffraction/Diffusion, Synchrotron Radiation, Cultural Heritage, Biomineralization (2024), p. 101 | DOI:10.1002/9781394332458.ch4
  • Jake Entwistle; Li Zhang; Hengyi Zhang; Nuria Tapia-Ruiz Materials synthesis for Na-ion batteries, Comprehensive Inorganic Chemistry III (2023), p. 199 | DOI:10.1016/b978-0-12-823144-9.00195-3
  • Kirsten M.Ø. Jensen; Susan R. Cooper Total scattering and pair distribution function analysis for studies of nanomaterials, Comprehensive Inorganic Chemistry III (2023), p. 307 | DOI:10.1016/b978-0-12-823144-9.00072-8
  • Mengdan Qiao; Meiling Wang; Xianze Meng; Hanyu Zhu; Yu Zhang; Zhiyong Ji; Yingying Zhao; Jie Liu; Shizhao Wang; Xiaofu Guo; Jing Wang; Jingtao Bi; Panpan Zhang; Devis Di Tommaso; Fei Li; Junsheng Yuan Fine analysis of the component effect on the microstructure of LiCl solution, Journal of Molecular Liquids, Volume 373 (2023), p. 121238 | DOI:10.1016/j.molliq.2023.121238
  • Maxwell W. Terban; Simon J. L. Billinge Structural Analysis of Molecular Materials Using the Pair Distribution Function, Chemical Reviews, Volume 122 (2022) no. 1, p. 1208 | DOI:10.1021/acs.chemrev.1c00237
  • Emil T. S. Kjær; Olivia Aalling‐Frederiksen; Long Yang; Nancy K. Thomas; Mikkel Juelsholt; Simon J. L. Billinge; Kirsten M. Ø. Jensen In Situ Studies of the Formation of Tungsten and Niobium Oxide Nanoparticles: Towards Automated Analysis of Reaction Pathways from PDF Analysis using the Pearson Correlation Coefficient, Chemistry–Methods, Volume 2 (2022) no. 9 | DOI:10.1002/cmtd.202200034
  • Zhujun Zhang; Takashi Tsuchimochi; Toshiaki Ina; Yoshitaka Kumabe; Shunsuke Muto; Koji Ohara; Hiroki Yamada; Seiichiro L. Ten-no; Takashi Tachikawa Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis, Nature Communications, Volume 13 (2022) no. 1 | DOI:10.1038/s41467-022-28944-y
  • Christoph Heintze; Iaroslav Babenko; Jirina Zackova Suchanova; Alastair Skeffington; Benjamin M. Friedrich; Nils Kröger The molecular basis for pore pattern morphogenesis in diatom silica, Proceedings of the National Academy of Sciences, Volume 119 (2022) no. 49 | DOI:10.1073/pnas.2211549119
  • Stefan Habermehl; Carina Schlesinger; Dragica Prill Comparison and evaluation of pair distribution functions, using a similarity measure based on cross-correlation functions, Journal of Applied Crystallography, Volume 54 (2021) no. 2, p. 612 | DOI:10.1107/s1600576721001722
  • Sanja Djurdjić Mijin; A. M. Milinda Abeykoon; Andrijana Šolajić; Ana Milosavljević; Jelena Pešić; Yu Liu; Cedomir Petrovic; Zoran V. Popović; Nenad Lazarević Short-Range Order in VI3, Inorganic Chemistry, Volume 59 (2020) no. 22, p. 16265 | DOI:10.1021/acs.inorgchem.0c02060
  • Troels Lindahl Christiansen; Susan R. Cooper; Kirsten M. Ø. Jensen There's no place like real-space: elucidating size-dependent atomic structure of nanomaterials using pair distribution function analysis, Nanoscale Advances, Volume 2 (2020) no. 6, p. 2234 | DOI:10.1039/d0na00120a
  • Ivica Vujcic; Slobodan Masic; Mina Medic; Bojana Milicevic; Miroslav Dramicanin The influence of gamma irradiation on the color change of wool, linen, silk, and cotton fabrics used in cultural heritage artifacts, Radiation Physics and Chemistry, Volume 156 (2019), p. 307 | DOI:10.1016/j.radphyschem.2018.12.001
  • Marine Cotte; Pierre-Olivier Autran; Camille Berruyer; Catherine Dejoie; Jean Susini; Paul Tafforeau Cultural and Natural Heritage at the ESRF: Looking Back and to the Future, Synchrotron Radiation News, Volume 32 (2019) no. 6, p. 34 | DOI:10.1080/08940886.2019.1680213

Cité par 15 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: