Comptes Rendus
Review article
Baroclinic instability from an experimental perspective
Comptes Rendus. Physique, Online first (2024), pp. 1-48.

In the mid-latitude atmosphere, synoptic eddies carry heat and momentum towards the poles and are hence a major element shaping weather and climate. The eddies are due to baroclinic instability caused by a supercritical vertical wind shear, which in turn is due to a supercritical meridional temperature gradient. Since the 1950s this crucial instability has systematically been studied with the thermally driven rotating annulus laboratory experiment. In this review, we summarize the research on baroclinic instability from the experimenter’s perspective covering a period of about three quarters of a century. The fact that it was possible to tie in with the field of atmospheric dynamics, right from the start in the 1950s, makes the experiment unique compared to other experiments representing geophysical flow phenomena. The applications span a wide range of topics, e.g., regime transitions and the route to turbulence in the presence of rotation, or geostrophic turbulence, internal wave generation at baroclinic fronts, tests of operational weather forecasting methods, extreme value distributions with regard to climate, and more. In view of new measurement methods and data processing techniques, the baroclinic instability experiment will continue to be an important complement to numerical methods in the future.

Dans l’atmosphère des latitudes moyennes, les tourbillons synoptiques transportent la chaleur et élan vers les pôles et constituent donc un élément majeur du temps et du climat. Les tourbillons sont dus à l’instabilité barocline provoquée par un cisaillement vertical du vent supercritique, lui-même dû à un gradient de température méridien supercritique. Depuis les années 1950, cette instabilité cruciale a été systématiquement étudiée à l’aide de l’expérience de laboratoire de l’anneau rotatif à entraînement thermique. Dans cette revue, nous résumons les recherches sur l’instabilité barocline du point de vue de l’expérimentateur, sur une période d’environ trois quarts de siècle. Le fait qu’il ait été possible d’établir un lien avec le domaine de la dynamique atmosphérique, dès le début dans les années 1950, rend l’expérience unique par rapport à d’autres expériences utilisées pour examiner les phénomènes d’écoulements géophysiques. Les applications couvrent un large éventail de sujets, par exemple les transitions de régime et la voie vers la turbulence géostrophique, la génération d’ondes internes sur les fronts baroclines, les tests de méthodes opérationnelles de prévision météorologique, les distributions de valeurs extrêmes en ce qui concerne le climat, etc. Compte tenu des nouvelles méthodes de mesure et des techniques de traitement des données, l’expérience sur l’instabilité barocline restera à l’avenir un complément important des méthodes numériques.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/crphys.198
Keywords: Baroclinic instability, jet streams, Eady waves, Rossby waves
Mot clés : Instabilité barocline, courant-jets, ondes de Eady, ondes de Rossby

Uwe Harlander 1; Michael V. Kurgansky 2; Kevin Speer 3; Miklos Vincze 4

1 BTU Cottbus-Senftenberg, Dept. Aerodynamics and Fluid Mechanics, Siemens-Halske-Ring 15a, 03046 Cottbus, Germany
2 A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevsky 3, 119017 Moscow, Russia
3 Geophysical Fluid Dynamics Institute and Department of Scientific Computing, Florida State University, Tallahassee, 32306, FL USA
4 Eötvös Loránd University Department of Materials Physics and HUN-REN-ELTE Theoretical Physics Research Group, Theoretical Physics Research Group, Budapest, H-1117, Hungary; Institute of Earth Physics and Space Science (HUN-REN EPSS), Sopron, H-9400, Hungary
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2024__25_S3_A3_0,
     author = {Uwe Harlander and Michael V. Kurgansky and Kevin Speer and Miklos Vincze},
     title = {Baroclinic instability from an experimental perspective},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.198},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Uwe Harlander
AU  - Michael V. Kurgansky
AU  - Kevin Speer
AU  - Miklos Vincze
TI  - Baroclinic instability from an experimental perspective
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.198
LA  - en
ID  - CRPHYS_2024__25_S3_A3_0
ER  - 
%0 Journal Article
%A Uwe Harlander
%A Michael V. Kurgansky
%A Kevin Speer
%A Miklos Vincze
%T Baroclinic instability from an experimental perspective
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.198
%G en
%F CRPHYS_2024__25_S3_A3_0
Uwe Harlander; Michael V. Kurgansky; Kevin Speer; Miklos Vincze. Baroclinic instability from an experimental perspective. Comptes Rendus. Physique, Online first (2024), pp. 1-48. doi : 10.5802/crphys.198.

[1] D. Fultz Experimental analogies to atmospheric motions, Compendium of meteorology (T. F. Malone, ed.), American Meteorological Society, Boston, MA, 1951, pp. 1235–-1248 | DOI

[2] D. Fultz A preliminary report on experiments with thermally reproduced lateral mixing in a rotating hemispherical shell of liquid, J. Atmos. Sci., Volume 6 (1949), pp. 17-33

[3] M. Ghil; P. L. Read; L. Smith Geophysical flows as dynamical systems: the influence of Hide’s experiments, Astron. Geophys., Volume 51 (2010) no. 4, p. 4.28-4.35 | DOI

[4] J. G. Charney The dynamics of long waves in a baroclinic westerly current, J. Atmos. Sci., Volume 4 (1947), p. 136-–162

[5] E. T. Eady Long waves and cyclone waves, Tellus, Volume 1 (1949) no. 3, pp. 33-52 | DOI

[6] V. P. Starr Commentaries Concerning Research on the General Circulation, Tellus, Volume 6 (1954) no. 3, pp. 268-272 | DOI

[7] R. Hide; P. J. Mason Baroclinic waves in a rotating fluid subject to internal heating, Philos. Trans. R. Soc. Lond., Ser. A, Volume 268 (1970) no. 1186, pp. 201-232 | DOI

[8] P. R. Gent; H. Leach Baroclinic instability in an eccentric annulus, J. Fluid Mech., Volume 77 (1976) no. 4, p. 769-–788 | DOI

[9] K. D. Stewart; C. J. Shakespeare On stratified flow over a topographic ridge in a rotating annulus, Geophys. Astrophys. Fluid Dyn., Volume 118 (2024) no. 1, pp. 25-70 | DOI

[10] R. L. Pfeffer; W. W. Fowlis Wave Dispersion in a Rotating, Differentially Heated Cylindrical Annulus Of Fluid, J. Atmos. Sci., Volume 25 (1968) no. 3, pp. 361-371 | DOI

[11] U. Harlander; T. von Larcher; Y. Wang; C. Egbers PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Exp. Fluids, Volume 51 (2011), pp. 37-49 | DOI

[12] G. Buzyna; R. L. Pfeffer; R. Kung Kinematic Properties of Wave Amplitude Vacillation in a Thermally Driven Rotating Fluid, J. Atmos. Sci., Volume 46 (1989) no. 17, pp. 2716-2730 | DOI

[13] G.-Q. Li; R. Kung; R. L. Pfeffer An Experimental Study of Baroclinic Flows with and without Two-Wave Bottom Topography, J. Atmos. Sci., Volume 43 (1986) no. 22, pp. 2585-2599

[14] G. Buzyna; R. L. Pfeffer; R. Kung Transition to geostrophic turbulence in a rotating differentially heated annulus of fluid, J. Fluid Mech., Volume 145 (1984), p. 377-–403 | DOI

[15] R. L. Pfeffer; S. Applequist; R. Kung et al. Progress in Characterizing the Route to Geostrophic Turbulence and Redesigning Thermally Driven Rotating Annulus Experiments, Theor. Comput. Fluid Dyn., Volume 9 (1997), pp. 253-267 | DOI

[16] W.-G. Früh; P. L. Read Wave interactions and the transition to chaos of baroclinic waves in a thermally driven rotating annulus, Philos. Trans. R. Soc. Lond., Ser. A, Volume 355 (1997) no. 1722, pp. 101-153 | DOI

[17] R. L. Pfeffer; G. Buzyna; W. W. Fowlis Synoptic Features and Energetics of Wave-Amplitude Vacillation in a Rotating, Differentially-Heated Fluid, J. Atmos. Sci., Volume 31 (1974) no. 3, pp. 622-645 | DOI

[18] W.-G. Früh Amplitude vacillation in baroclinic flows, Modelling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (T. von Larcher; P. D. Williams, eds.) (Geophysical Monograph Series), American Geophysical Union, 2014, pp. 61-81 | DOI

[19] J. F. Price; H. T. Rossby Observations of a barotropic planetary wave in the western North Atlantic, J. Mar. Res., Volume 40 (1982), pp. 543-558

[20] P. L. Read From mixing to geostrophy: Geostrophic turbulence in atmospheres, oceans and the laboratory, Marine Turbulence: Theories, Observations, and Models (H. Z. Baumert; J. Simpson; J. Sündermann, eds.), Cambridge University Press, 2005, pp. 406-422

[21] P. M. Saunders The Instability of a Baroclinic Vortex, J. Phys. Oceanogr., Volume 3 (1973) no. 1, pp. 61-65 | DOI

[22] T. Maxworthy; S. Narimousa Unsteady, Turbulent Convection into a Homogeneous, Rotating Fluid,with Oceanographic Applications, J. Phys. Oceanogr., Volume 24 (1994) no. 5, pp. 865-887 | DOI

[23] J. Marshall; F. Schott Open-ocean convection: Observations, theory, and models, Rev. Geophys., Volume 37 (1999) no. 1, pp. 1-64 | DOI

[24] P. L. Read Transition To Geostrophic Turbulence In The Laboratory, And As A Paradigm In Atmospheres And Oceans, Surv. Geophys., Volume 22 (2001), pp. 265-317 | DOI

[25] P. L. Read; E. P. Pérez; I. M. Moroz; R. M. B. Young General circulation of planetary atmospheres: Insights from rotating annulus and related experiments, Modelling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (T. von Larcher; P. D. Williams, eds.), American Geophysical Union, 2014, pp. 9-44 | DOI

[26] P. L. Read Dynamics and circulation regimes of terrestrial planets, Planet. Space Sci., Volume 59 (2011), pp. 900-914 | DOI

[27] P. Read; D. Kennedy; N. Lewis et al. Baroclinic and barotropic instabilities in planetary atmospheres: energetics, equilibration and adjustment, Nonlinear Process. Geophys., Volume 27 (2020) no. 2, pp. 147-173 | DOI

[28] J. E. Hart A Laboratory Study of Baroclinic Instability, Geophys. Fluid Dyn., Volume 3 (1972), pp. 181-209 | DOI

[29] A. F. Lovegrove; P. L. Read; C. J. Richards Generation of inertia-gravity waves in a baroclinically unstable fluid, Q. J. R. Meteorol. Soc., Volume 126 (2000) no. 570, pp. 3233-3254 | DOI

[30] P. D. Williams; T. W. N. Haine; P. L. Read On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear, J. Fluid Mech., Volume 528 (2005), p. 1-–22 | DOI

[31] U. Harlander; A. Sukhanovskii; S. Abide et al. New Laboratory Experiments to Study the Large-Scale Circulation and Climate Dynamics, Atmosphere, Volume 14 (2023), 836 | DOI

[32] R. Hide; W. W. Fowlis Thermal convection in a rotating annulus of liquid: effect of viscosity on the transition between axisymmetric and non-axisymmetric flow regimes, J. Atmos. Sci., Volume 22 (1965), pp. 541-558 | DOI

[33] J. S. Fein; R. L. Pfeffer An experimental study of the effects of Prandtl number on thermal convection in a rotating, differentially heated cylindrical annulus of fluid, J. Fluid Mech., Volume 75 (1976) no. 1, p. 81-–112 | DOI

[34] R. Hide; P. J. Mason Sloping convection in a rotating fluid, Adv. Phys., Volume 24 (1975) no. 1, pp. 47-100 | DOI

[35] R. Hide; R. Stoneley An experimental study of thermal convection in a rotating liquid, Philos. Trans. R. Soc. Lond., Ser. A, Volume 250 (1958) no. 983, pp. 441-478 | DOI

[36] C. A. Smith; K. G. Speer; R. W. Griffiths Multiple Zonal Jets in a Differentially Heated Rotating Annulus, J. Phys. Oceanogr., Volume 44 (2014) no. 9, pp. 2273-2291 | DOI

[37] S. D. Marshall; P. L. Read An experimental investigation of blocking by partial barriers in a rotating baroclinic annulus, Geophys. Astrophys. Fluid Dyn., Volume 112 (2018) no. 2, pp. 97-129 | DOI

[38] U. Harlander; J. Wenzel; K. Alexandrov; Y. Y. Wang; C. Egbers Simultaneous PIV and thermography measurements of partially blocked flow in a differentially heated rotating annulus, Exp. Fluids, Volume 52 (2012), pp. 1077-1087 | DOI

[39] H. Scolan; P. L. Read A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment, Exp. Fluids, Volume 58 (2017) no. 75, 75 | DOI

[40] A. K. Banerjee; A. Bhattacharya; S. Balasubramanian Experimental study of rotating convection in the presence of bi-directional thermal gradients with localized heating, AIP Adv., Volume 8 (2018) no. 11, 115324 | DOI

[41] A. Sukhanovskii; E. Popova; A. Vasiliev A shallow layer laboratory model of large-scale atmospheric circulation, Geophys. Astrophys. Fluid Dyn., Volume 117 (2023) no. 3, pp. 155-176 | DOI

[42] P. L. Read; P. Maubert; A. Randriamampianina; W.-G. Früh Direct numerical simulation of transitions towards structural vacillation in an air-filled, rotating, baroclinic annulus, Phys. Fluids, Volume 20 (2008) no. 4, 044107 | DOI

[43] T. von Larcher; S. Viazzo; U. Harlander; M. Vincze; A. Randriamampianina Instabilities and small-scale waves within the Stewartson layers of a thermally driven rotating annulus, J. Fluid Mech., Volume 841 (2018), pp. 380–-407 | DOI

[44] P. L. Read A combined laboratory and numerical study of heat transport by baroclinic eddies and axisymmetric flows, J. Fluid Mech., Volume 489 (2003), pp. 301–-323 | DOI

[45] J. Pedlosky Geophysical Fluid Dynamics, Springer, 1987 | DOI

[46] R. T. Pierrehumbert; K. L. Swanson Baroclinic Instability, Ann. Rev. Fluid Mech., Volume 27 (1995), pp. 419-467 | DOI

[47] G. K. Vallis Atmospheric and Oceanic Fluid Dynamics. Fundamentals and Large-scale Circulation, Cambridge University Press, 2006 | DOI

[48] M. E. McIntyre Diffusive destabilization of the baroclinic circular vortex, Geophys. Fluid Dyn., Volume 1 (1970), pp. 19-58 | DOI

[49] V. I. Arnol’d On the conditions of nonlinear stability of plane stationary curvilinear currents of ideal fluids, Dokl. Akad. Nauk SSSR, Volume 162 (1965) no. 5, pp. 975–-978

[50] W. Blumen On the stability of quasi-geostrophic flow, J. Atmos. Sci., Volume 25 (1968) no. 5, p. 929-–931 | DOI

[51] L. A. Diky; M. V. Kurgansky Integral conservation law for perturbations of zonal flow, and its applications to stability studies, Izv. - Atmos. Ocean. Phys., Volume 7 (1971) no. 9, p. 623-–626

[52] M. V. Kurgansky Adiabatic invariants in large-scale atmospheric dynamics, Taylor & Francis, 2002, 222 pages

[53] M. V. Kalashnik; M. V. Kurgansky; O. G. Chkhetiani Baroclinic instability in geophysical fluid dynamics, Physics - Uspekhi., Volume 65 (2022) no. 10, pp. 1039-1070 | DOI

[54] J. G. Charney; M. E. Stern On the stability of internal baroclinic jets in a rotating atmosphere, J. Atmos. Sci., Volume 19 (1962), p. 159-–172 | DOI

[55] J. Pedlosky The Stability of Currents in the Atmosphere and the Ocean: Part I, J. Atmos. Sci., Volume 21 (1964) no. 2, pp. 201-219 | DOI

[56] H. C. Davies; C. H. Bishop Eady edge waves and rapid development, J. Atmos. Sci., Volume 51 (1994) no. 13, pp. 1930–-1946 | DOI

[57] E. Heifetz; C. H. Bishop; B. J. Hoskins; J. Methven The counter-propagating Rossby-wave perspective on baroclinic instability. I: Mathematical basis, Q. J. R. Meteorol. Soc., Volume 130 (2004) no. 596, p. 211-–231 | DOI

[58] E. Heifetz; J. Methven Relating optimal growth to counterpropagating Rossby waves in shear instability, Phys. Fluids, Volume 17 (2005), 064107 | DOI

[59] B. F. Farrell; P. J. Ioannou Generalized Stability Theory. Part I: Autonomous Operators, J. Atmos. Sci., Volume 53 (1996) no. 14, pp. 2025-2040 | DOI

[60] S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability, Oxford University Press, 1961

[61] V. Barcilon Role of the Ekman friction in the stability of the symmetric regime obtained in a rotating annulus, J. Atmos. Sci., Volume 21 (1964), p. 291-–299 | DOI

[62] G. P. Williams; J. B. Robinson Generalized Eady waves and Ekman pumping, J. Atmos. Sci., Volume 31 (1974), pp. 1768-1776 | DOI

[63] J. S. A. Green A problem in baroclinic stability, Q. J. R. Meteorol. Soc., Volume 86 (1960) no. 368, pp. 237-251 | DOI

[64] W. Blumen Uniform potential vorticity flow: Part I—Theory of wave interactions and two-dimensional turbulence, J. Atmos. Sci., Volume 35 (1978), p. 774-–783 | DOI

[65] M. Held; R. T. Pierrehumbert; S. T. Garner; K. L. Swanson Surface quasi-geostrophic dynamics, J. Fluid Mech., Volume 282 (1995), pp. 1-20 | DOI

[66] N. A. Phillips A simple three-dimensional model for the study of large-scale flow patterns, J. Atmos. Sci., Volume 8 (1951), p. 381-–394

[67] E. N. Lorenz The mechanics of vacillation, J. Atmos. Sci., Volume 20 (1963) no. 3, p. 448-–465 | DOI

[68] B. M. Boubnov; G. S. Golitsyn Convection in Rotating Fluids, Kluwer Academic Publishers, 1995 | DOI

[69] B. J. Hoskins The role of potential vorticity in symmetric stability and instability, Q. J. R. Meteorol. Soc., Volume 100 (1974), p. 480-–482 | DOI

[70] T. J. Dunkerton On the inertial stability of the equatorial middle atmosphere, J. Atmos. Sci., Volume 38 (1981), pp. 2354-2364 | DOI

[71] P. D. Williams; P. L. Read; T. W. N. Haine Testing the limits of quasi-geostrophic theory: application to observed laboratory flows outside the quasi-geostrophic regime, J. Fluid Mech., Volume 649 (2010), p. 187-–203 | DOI

[72] B. P. Hignett; A. A. White; R. D. Carter; W. D. N. Jackson; R. M. Small A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus, Q. J. R. Meteorol. Soc., Volume 111 (1985) no. 467, pp. 131-154 | DOI

[73] J. P. McGuirk; E. R. Reiter A vacillation in atmospheric energy parameters, J. Atmos. Sci., Volume 33 (1976) no. 11, pp. 2079-2093 | DOI

[74] L. Barry; G. Craig; J. Thuburn Poleward heat transport by the atmospheric heat engine, Nature, Volume 415 (2002), pp. 774-777 | DOI

[75] M. Bowden; H. F. Eden Thermal Convection in a Rotating Fluids Annulus: Temperature, Heat Flow and Flow Field Observations in the Upper Symmetric Regime, J. Atmos. Sci., Volume 22 (1965) no. 2, pp. 185-195 | DOI

[76] E. Pérez-Pérez; P. L. Read; I. M. Moroz Assessing eddy parameterization schemes in a differentially heated rotating annulus experiment, Ocean Model., Volume 32 (2010) no. 3, pp. 118-131 (The magic of modelling: A special volume commemorating the contributions of Peter D. Killworth – Part 2) | DOI

[77] R. L. Pfeffer; G. Buzyna; R. Kung Time-Dependent Modes of Behavior of Thermally Driven Rotating Fluids, J. Atmos. Sci., Volume 37 (1980) no. 10, pp. 2129-2149 | DOI

[78] M. Bowden; H. F. Eden Effect of a radial barrier on the convective flow in a rotating fluid annulus, J. Geophys. Res. (1896-1977), Volume 73 (1968) no. 22, pp. 6887-6895 | DOI

[79] Q. G. Rayer; D. W. Johnson; R. Hide Thermal convection in a rotating fluid annulus blocked by a radial barrier, Geophys. Astrophys. Fluid Dyn., Volume 87 (1998) no. 3-4, pp. 215-252 | DOI

[80] M. Vincze; T. Bozóki; M. Herein et al. The Drake Passage opening from an experimental fluid dynamics point of view, Sci. Rep., Volume 11 (2021), 19951 | DOI

[81] G. P. Williams Baroclinic annulus waves, J. Fluid Mech., Volume 49 (1971) no. 3, pp. 417–-449 | DOI

[82] B. Gallet; R. Ferrari The vortex gas scaling regime of baroclinic turbulence, Proc. Natl. Acad. Sci. USA, Volume 117 (2020) no. 9, pp. 4491-4497 | DOI

[83] B. Gallet; B. Miquel; G. Hadjerci; K. J. Burns; G. R. Flierl; R. Ferrari Transport and emergent stratification in the equilibrated Eady model: the vortex-gas scaling regime, J. Fluid Mech., Volume 948 (2022), A31 | DOI

[84] U. Achatz; M. J. Alexander; E. Becker et al. Atmospheric Gravity Waves: Processes and Parameterization, J. Atmos. Sci., Volume 81 (2024) no. 2, pp. 237-262 | DOI

[85] R. Hide Some experiments on thermal convection in a rotating liquid, Q. J. R. Meteorol. Soc., Volume 79 (1953) no. 339, p. 161-161 | DOI

[86] R. L. Pfeffer; Y. Chiang Two kinds of vacillation in rotating laboratory experiments, Mon. Wea. Rev., Volume 95 (1967) no. 2, pp. 75-82 | DOI

[87] K. Ukajil; K. Tamaki A Numerical Study of Tilted-Trough Vacillation Observed in a Differentially Heated Rotating Fluid Annulus, J. Meteorol. Soc. Jpn. Ser. II, Volume 68 (1990) no. 4, pp. 447-460 | DOI

[88] W. W. Fowlis; R. L. Pfeffer Characteristics of Amplitude Vacillation in a Rotating, Differentially Heated Fluid Determined by a Multi-Probe Technique, J. Atmos. Sci., Volume 26 (1969) no. 1, pp. 100-108 | DOI

[89] J. E. Hart Finite Amplitude Baroclinic Instability, Ann. Rev. Fluid Mech., Volume 11 (1979) no. 1, pp. 147-172 | DOI

[90] B. G. Hunt Atmospheric Vacillations in a General Circulation Model I: The Large-Scale Energy Cycle, J. Atmos. Sci., Volume 35 (1978) no. 7, pp. 1133-1143 | DOI

[91] J. Pedlosky Finite-Amplitude Baroclinic Waves, J. Atmos. Sci., Volume 27 (1970) no. 1, pp. 15-30 | DOI

[92] P. E. Merelees On the periods of amplitude vacillations, J. Meteorol. Soc. Jpn. Ser. II, Volume 50 (1972), pp. 214-225 | DOI

[93] Koji Ohkitani; Takashi Sakajo Oscillatory damping in long-time evolution of the surface quasi-geostrophic equations with generalized viscosity: a numerical study, Nonlinearity, Volume 23 (2010) no. 12, 3029 | DOI

[94] J. Pedlosky Finite-Amplitude Baroclinic Waves with Small Dissipation, J. Atmos. Sci., Volume 28 (1971) no. 4, pp. 587-597 | DOI

[95] A. Barcilon; P. G. Drazin A Weakly Nonlinear Theory of Amplitude Vacillation and Baroclinic Waves, J. Atmos. Sci., Volume 41 (1984) no. 22, pp. 3314-3330 | DOI

[96] B. Wang; A. Barcilon The Weakly Nonlinear Dynamics of a Planetary Green Mode and Atmospheric Vacillation, J. Atmos. Sci., Volume 43 (1986) no. 12, pp. 1275-1287 | DOI

[97] J. Pedlosky; J. Thomson Baroclinic instability of time-dependent currents, J. Fluid Mech., Volume 490 (2003), pp. 189–-215 | DOI

[98] M. C. Nguyen; M. J. Reeder; N. E. Davidson; R. K. Smith; M. T. Montgomery Inner-core vacillation cycles during the intensification of Hurricane Katrina, Q. J. R. Meteorol. Soc., Volume 137 (2011) no. 657, pp. 829-844 | DOI

[99] M. Vincze; U. Harlander; T. von Larcher; C. Egbers An experimental study of regime transitions in a differentially heated baroclinic annulus with flat and sloping bottom topographies, Nonlinear Process. Geophys., Volume 21 (2014) no. 1, pp. 237-250 | DOI

[100] S. H. Risch; P. L. Read A laboratory study of global-scale wave interactions in baroclinic flow with topography II: vacillations and low-frequency variability, Geophys. Astrophys. Fluid Dyn., Volume 109 (2015) no. 4, pp. 359-390 | DOI

[101] R. M. B. Young; P. L. Read Predictability of the thermally driven laboratory rotating annulus, Q. J. R. Meteorol. Soc., Volume 142 (2016) no. 695, pp. 911-927 | DOI

[102] S. C. Hardiman; A. A. Scaife; N. J. Dunstone; L. Wang Subseasonal Vacillations in the Winter Stratosphere, Geophys. Res. Lett., Volume 47 (2020) no. 9, e2020GL087766 | DOI

[103] P. L. Read Rotating Annulus Flows and Baroclinic Waves, Rotating fluids in Geophysical and Industrial Applications (E. J. Hopfinger, ed.), Springer, 1992, pp. 185-214 | DOI

[104] R. H. Kraichnan Inertial ranges in two-dimensional turbulence, Phys. Fluids, Volume 10 (1967), pp. 1417-1423 | DOI

[105] P. G. Saffman On the spectrum and decay of random two-dimensional vorticity distributions at large reynolds number, Stud. Appl. Math., Volume 50 (1971) no. 4, pp. 377-383 | DOI

[106] R. D. Wordsworth; P. L. Read; Y. H. Yamazaki Turbulence, waves, and jets in a differentially heated rotating annulus experiment, Phys. Fluids, Volume 20 (2008) no. 12, 126602 | DOI

[107] C. Rodda; U. Harlander Transition from Geostrophic Flows to Inertia–Gravity Waves in the Spectrum of a Differentially Heated Rotating Annulus Experiment, J. Atmos. Sci., Volume 77 (2020) no. 8, pp. 2793-2806 | DOI

[108] P. J. Mason Baroclinic waves in a container with sloping end walls, Philos. Trans. R. Soc. Lond., Ser. A, Volume 278 (1975) no. 1284, pp. 397-445 | DOI

[109] S. Condie; P. Rhines A convective model for the zonal jets in the atmospheres of Jupiter and Saturn, Nature, Volume 367 (1994), pp. 711-713 | DOI

[110] P. L. Read; T. N. L. Jacoby; P. H. T. Rogberg et al. An experimental study of multiple zonal jet formation in rotating, thermally driven convective flows on a topographic beta-plane, Phys. Fluids, Volume 27 (2015) no. 8, 085111 | DOI

[111] A. M. Treguier; N. G. Hogg; M. Maltrud; K. Speer; V. Thierry The Origin of Deep Zonal Flows in the Brazil Basin, J. Phys. Oceanogr., Volume 33 (2003) no. 3, pp. 580-599

[112] H. Nakano; N. Suginohara Importance of the eastern Indian Ocean for the abyssal Pacific, J. Geophys. Res. Oceans, Volume 107 (2002) no. C12, p. 12-1–12-14 | DOI

[113] R. Herbei; I. W. McKeague; K. G. Speer Gyres and Jets: Inversion of Tracer Data for Ocean Circulation Structure, J. Phys. Oceanogr., Volume 38 (2008) no. 6, pp. 1180-1202 | DOI

[114] D. Lemasquerier; B. Favier; M. M. Le Bars Zonal jets at the laboratory scale: hysteresis and Rossby waves resonance, J. Fluid Mech., Volume 910 (2021), A18 | DOI

[115] H. Aref The development of chaotic advection, Phys. Fluids, Volume 14 (2002) no. 4, pp. 1315-1325 | DOI

[116] Amy S. Bower A Simple Kinematic Mechanism for Mixing Fluid Parcels across a Meandering Jet, J. Phys. Oceanogr., Volume 21 (1991) no. 1, pp. 173-180 | DOI

[117] R. M. Samelson; S. Wiggins Lagrangian Transport in Geophysical Jets and Waves, Interdisciplinary Applied Mathematics, 31, Springer, 2006 | DOI

[118] M. Agaoglou; V. J. García-Garrido; U. Harlander; A. M. Mancho Building transport models from baroclinic wave experimental data, Phys. Fluids, Volume 36 (2024) no. 1, 016611 | DOI

[119] R. Mizuta; S. Yoden Chaotic Mixing and Transport Barriers in an Idealized Stratospheric Polar Vortex, J. Atmos. Sci., Volume 58 (2001) no. 17, pp. 2616-2629 | DOI

[120] A. de la Cámara; C. R. Mechoso; A. M. Mancho; E. Serrano; K. Ide Isentropic Transport within the Antarctic Polar-Night Vortex: Rossby Wave Breaking Evidence and Lagrangian Structures, J. Atmos. Sci., Volume 70 (2013) no. 9, pp. 2982-3001 | DOI

[121] M. Abalos; A. de la Cámara Twenty-First Century Trends in Mixing Barriers and Eddy Transport in the Lower Stratosphere, Geophys. Res. Lett., Volume 47 (2020) no. 21, e2020GL089548 | DOI

[122] M. E. McIntyre On the Antarctic ozone hole, J. Atmos. Sol.-Terr. Phys., Volume 51 (1989) no. 1, pp. 29-43 (Cedar Science-Part II) | DOI

[123] G. García-Sánchez; A. M. Mancho; A. G. Ramos; J. Coca; S. Wiggins Structured pathways in the turbulence organizing recent oil spill events in the Eastern Mediterranean, Sci. Rep., Volume 12 (2022) no. 1, 3662 | DOI

[124] G. Haller Transport Barriers and Coherent Structures in Flow Data, Cambridge University Press, 2023 | DOI

[125] J. Sommeria; S. Mayers; H. L. Swinney Laboratory model of a planetary eastward jet, Nature, Volume 337 (1989), pp. 58-61 | DOI

[126] Robert P. Behringer; Steven D. Meyers; H. L. Swinney Chaos and mixing in a geostrophic flow, Phys. Fluids, A, Volume 3 (1991) no. 5, pp. 1243-1249 | DOI

[127] S. Sugata; S. Yoden Chaotic Lagrangian Motion and Heat Transport in a Steady, Baroclinic Annulus Wave, J. Meteorol. Soc. Jpn. Ser. II, Volume 72 (1994) no. 4, pp. 569-587 | DOI

[128] T. Tajima; T. Nakamura; T. Kuroda Laboratory Experiments of Lagrangian Motions in a Steady Baroclinic Wave -Internal Structures of Vortices-, J. Meteorol. Soc. Jpn., Volume 73 (1995) no. 1, pp. 37-46 | DOI

[129] T. Tajima; T. Nakamura Meridional Flow Field of Axisymmetric Flows in a Rotating Annulus, J. Atmos. Sci., Volume 57 (2000) no. 18, pp. 3109-3121 | DOI

[130] R. J. Keane; P. L. Read; G. P. King On the stirring properties of the thermally-driven rotating annulus, Phys. D: Nonlinear Phenom., Volume 268 (2014), pp. 50-58 | DOI

[131] C. Mendoza; A. M. Mancho Hidden Geometry of Ocean Flows, Phys. Rev. Lett., Volume 105 (2010) no. 3, 038501 | DOI

[132] A. M. Mancho; S. Wiggins; J. Curbelo; C. Mendoza Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013) no. 12, pp. 3530-3557 | DOI

[133] I. M. Jánosi; P. Kiss; V. Homonnai et al. Dynamics of passive tracers in the atmosphere: Laboratory experiments and numerical tests with reanalysis wind fields, Phys. Rev. E, Volume 82 (2010) no. 4, 046308 | DOI

[134] G. J. Shutts The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields, Q. J. R. Meteorol. Soc., Volume 109 (1983) no. 462, pp. 737–-761 | DOI

[135] P. Martineau; H. Nakamura; A. Yamamoto; Y. Kosaka Baroclinic blocking, Geophys. Res. Lett., Volume 49 (2022), e2022GL097791 | DOI

[136] J. G. Charney; D. M. Straus Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems, J. Atmos. Sci., Volume 37 (1980) no. 6, pp. 1157-1176 | DOI

[137] J. G. Charney; J. G. DeVore Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci., Volume 36 (1979) no. 7, pp. 1205-1216 | DOI

[138] A. R. Hansen; T.-C. Chen A Spectral Energetics Analysis of Atmospheric Blocking, Mon. Wea. Rev., Volume 110 (1982) no. 9, pp. 1146-1165 | DOI

[139] D. F. Rex Blocking action in the middle troposphere and its effect upon regional climate. I An aerological study of blocking action, Tellus, Volume 2 (1950) no. 3, p. 196-–211 | DOI

[140] P. M. Sousa; D. Barriopedro; R. García-Herrera; T. Woollings; R. M. Trigo A new combined detection algorithm for blocking and subtropical ridges, J. Climate, Volume 34 (2021) no. 18, pp. 7735–-7758 | DOI

[141] A. M. Obukhov; M. V. Kurgansky; M. S. Tatarskaya Dynamic conditions for the origin of droughts and other large-scale weather anomalies, Meteorol. Gidrol. (in Russian), Volume 10 (1984), pp. 5-13

[142] T. Kuhlbrodt; P. Névir Low-order point vortex models of atmospheric blocking, Meteorol. Atmos. Phys., Volume 73 (2000), pp. 127-138 | DOI

[143] A. Müller; P Nevir; L. Schielicke; M. Hirt; J. Pueltz; I. Sonntag Applications of point vortex equilibria: blocking events and the stability of the polar vortex, Tellus A, Volume 67 (2015), 29184 | DOI

[144] G. Gottwald; R. Grimshaw The formation of coherent structures in the context of blocking, J. Atmos. Sci., Volume 56 (1999), pp. 3640-3662 | DOI

[145] E. N. Lorenz The Nature and Theory of the General Circulation of the Atmosphere, World Meteorological Organization, 1967, 161 pages

[146] C.-G. Rossby On the dynamics of certain types of blocking waves, J. Chin. Geophys. Soc., Volume 2 (1950), pp. 1–-13

[147] M. Kageyama; F. D’Andrea; G. Ramstein; P. J. Valdes; R. Vautard Weather regimes in past climate atmospheric general circulation model simulations, Clim. Dyn., Volume 15 (1999), pp. 773-793 | DOI

[148] E. Moreno-Chamarro; D. Zanchettin; K. Lohmann; J. Luterbacher; J. H. Jungclaus Winter amplification of the European Little Ice Age cooling by the subpolar gyre, Sci. Rep., Volume 7 (2017), 9981 | DOI

[149] J. A. Francis; S. J. Vavrus Evidence for a wavier jet stream in response to rapid Arctic warming, Environ. Res. Lett., Volume 10 (2015), 014005 | DOI

[150] T. Woollings; D. Barriopedro; J. Methven et al. Blocking and its response to climate change, Curr. Clim. Change Rep., Volume 4 (2018), pp. 287–-300 | DOI

[151] I. I. Mokhov; A. V. Timazhev Atmospheric blocking and changes in its frequency in the 21st century simulated with the ensemble of climate models, Russ. Meteorol. Hydrol., Volume 44 (2019) no. 6, p. 369-–377 | DOI

[152] M. V. Kurgansky A simple model of blocking action over a hemisphere, Theor. Appl. Climatol., Volume 147 (2022), pp. 65-71 | DOI

[153] W. Moon; G. E. Manucharyan; H. A. Dijkstra Baroclinic instability and large-scale wave propagation in a planetary-scale atmosphere, Q. J. R. Meteorol. Soc., Volume 148 (2022), p. 809-–825 | DOI

[154] N. A. Phillips Geostrophic motion, Rev. Geophys., Volume 1 (1963) no. 2, p. 123-–176 | DOI

[155] E. R. Weeks; Y. Tian; J. S. Urbach; K. Ide; H. L. Swinney; M. Ghil Transitions Between Blocked and Zonal Flows in a Rotating Annulus with Topography, Science, Volume 278 (1997) no. 5343, pp. 1598-1601 | DOI

[156] R. W. Griffiths; P. F. Linden Intermittent baroclinic instability and fluctuations in geophysical circulations, Nature, Volume 316 (1985) no. 2, pp. 801-803 | DOI

[157] P. L. Read; S. H. Risch A laboratory study of global-scale wave interactions in baroclinic flow with topography I: multiple flow regimes, Geophys. Astrophys. Fluid Dyn., Volume 105 (2011) no. 2-3, pp. 128-160 | DOI

[158] S. D. Marshall; P. L. Read An experimental investigation into topographic resonance in a baroclinic rotating annulus, Geophys. Astrophys. Fluid Dyn., Volume 109 (2015) no. 4, pp. 391-421 | DOI

[159] S. D. Marshall; P. L. Read Thermal versus mechanical topography: an experimental investigation in a rotating baroclinic annulus, Geophys. Astrophys. Fluid Dyn., Volume 114 (2020) no. 6, pp. 763-797 | DOI

[160] M. Rantanen; A. Y. Karpechko; A. Lipponen et al. The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ., Volume 3 (2022) no. 1, 168 | DOI

[161] B. Gyüre; I. Bartos; I. M. Jánosi Nonlinear statistics of daily temperature fluctuations reproduced in a laboratory experiment, Phys. Rev. E, Volume 76 (2007) no. 3, 037301 | DOI

[162] F. J Romeiras; C. Grebogi; E. Ott Multifractal properties of snapshot attractors of random maps, Phys. Rev. A, Volume 41 (1990) no. 2, pp. 784-799 | DOI

[163] M. Ghil; M. D. Chekroun; E. Simonnet Climate dynamics and fluid mechanics: Natural variability and related uncertainties, Phys. D: Nonlinear Phenom., Volume 237 (2008) no. 14-17, pp. 2111-2126 | DOI

[164] M. Vincze; I. D. Borcia; U. Harlander Temperature fluctuations in a changing climate: an ensemble-based experimental approach, Sci. Rep., Volume 7 (2017) no. 1, p. 254 | DOI

[165] C. Rodda; U. Harlander; M. Vincze Jet stream variability in a polar warming scenario – a laboratory perspective, Weather Clim. Dynam., Volume 3 (2022), p. 937-–950 | DOI

[166] R. Geen; S. I. Thomson; J. A. Screen et al. An Explanation for the Metric Dependence of the Midlatitude Jet-Waviness Change in Response to Polar Warming, Geophys. Res. Lett., Volume 50 (2023) no. 21, e2023GL105132 | DOI

[167] M. Vincze; C. Hancock; U. Harlander; C. Rodda; K. Speer Extreme temperature fluctuations in laboratory models of the mid-latitude atmospheric circulation, Sci. Rep., Volume 13 (2023) no. 1, 20904 | DOI

[168] U. Harlander; I. D. Borcia; M. Vincze; C. Rodda Probability distribution of extreme events in a baroclinic wave laboratory experiment, Fluids, Volume 7 (2022) no. 8, 274 | DOI

[169] T. Bozóki; L. Czelnai; A. Horicsányi; A. Nyerges; A. Pál; J. Pálfy; M. Vincze Large-scale ocean circulation in the Southern Hemisphere with closed and open Drake Passage–A laboratory minimal model approach, Deep-Sea Res. II: Top. Stud. Oceanogr., Volume 160 (2019), pp. 16-24 | DOI

[170] M. Vincze; T. Bozóki; M. Herein et al. The Drake Passage opening from an experimental fluid dynamics point of view, Sci. Rep., Volume 11 (2021) no. 1, 19951 | DOI

[171] T. N. L. Jacoby; P. L. Read; P. D. Williams; R. M. B. Young Generation of inertia–gravity waves in the rotating thermal annulus by a localised boundary layer instability, Geophys. Astrophys. Fluid Dyn., Volume 105 (2011) no. 2-3, pp. 161-181 | DOI

[172] A. E. Gill; A. Davey Instabilities of a buoyancy-driven system, J. Fluid Mech., Volume 35 (1969) no. 4, pp. 775–-798 | DOI

[173] A. Randriamampianina; E. Crespo del Arco Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus, J. Fluid Mech., Volume 782 (2015), p. 144–177 | DOI

[174] F. Lott; H. Kelder; H. Teitelbaum A transition from Kelvin–Helmholtz instabilities to propagating wave instabilities, Phys. Fluids, A, Volume 4 (1992) no. 9, pp. 1990-1997 | DOI

[175] L. Rayleigh On the dynamics of revolving fluids, Proc. R. Soc. Lond., Ser. A, Volume 93, (648) (1917), pp. 148-154 (http://rspa.royalsocietypublishing.org/content/93/648/148.full.pdf)

[176] J. E. Hart; S. Kittelman Instabilities of the sidewall boundary layer in a differentially driven rotating cylinder, Phys. Fluids, Volume 8 (1996) no. 3, pp. 692-696 | DOI

[177] B. R. Sutherland; U. Achatz; C. P. Caulfield; J. M. Klymak Recent progress in modeling imbalance in the atmosphere and ocean, Phys. Rev. Fluids, Volume 4 (2019) no. 1, 010501 | DOI

[178] S. Borchert; U. Achatz; M. D. Fruman Gravity wave emission in an atmosphere-like configuration of the differentially heated rotating annulus experiment, J. Fluid Mech., Volume 758 (2014), pp. 287–-311 | DOI

[179] C. Rodda; S. Hien; U. Achatz; U. Harlander A new atmospheric-like differentially heated rotating annulus configuration to study gravity wave emission from jets and fronts, Exp. Fluids, Volume 61 (2020), 2 | DOI

[180] P. D. Williams; P. L. Read; T. W. N. Haine Spontaneous generation and impact of inertia-gravity waves in a stratified, two-layer shear flow, Geophys. Res. Lett., Volume 30 (2003) no. 24, 2255 | DOI

[181] R. Ford Gravity wave radiation from vortex trains in rotating shallow water, J. Fluid Mech., Volume 281 (1994), pp. 81–-118 | DOI

[182] P. D. Williams; T. W. N. Haine; P. L. Read Inertia–Gravity Waves Emitted from Balanced Flow: Observations, Properties, and Consequences, J. Atmos. Sci., Volume 65 (2008) no. 11, pp. 3543-3556 | DOI

[183] J.-B. Flór; H. Scolan; J. Gula Frontal instabilities and waves in a differentially rotating fluid, J. Fluid Mech., Volume 685 (2011), p. 532-–542 | DOI

[184] D. O’sullivan; T. J. Dunkerton Generation of Inertia–Gravity Waves in a Simulated Life Cycle of Baroclinic Instability, J. Atmos. Sci., Volume 52 (1995) no. 21, pp. 3695-3716 | DOI

[185] O. Bühler; J. Callies; R. Ferrari Wave–vortex decomposition of one-dimensional ship-track data, J. Fluid Mech., Volume 756 (2014), pp. 1007-1026 | DOI

[186] Q. Li; E. Lindborg Weakly or Strongly Nonlinear Mesoscale Dynamics Close to the Tropopause?, J. Atmos. Sci., Volume 75 (2018) no. 4, pp. 1215-1229 | DOI

[187] C. Rodda; I. D. Borcia; P. Le Gal; M. Vincze; U. Harlander Baroclinic, Kelvin and inertia-gravity waves in the barostrat instability experiment, Geophys. Astrophys. Fluid Dyn., Volume 112 (2018) no. 3, pp. 175-206 | DOI

[188] P. G. Baines Topographic Effects in Stratified Flows, Cambridge University Press, 2022

[189] P. Léard; B. Favier; P. Le Gal; M. Le Bars Coupled convection and internal gravity waves excited in water around its density maximum at 4 C, Phys. Rev. Fluids, Volume 5 (2020) no. 2, 024801 | DOI

[190] V. Dorel; P. Le Gal; M. Le Bars Experimental study of the penetrative convection in gases, Phys. Rev. Fluids, Volume 8 (2023) no. 10, 103501 | DOI

[191] S. Abide; S. Viazzo; U. Harlander; G. Meletti; I. Raspo; A. Randriamampianina On the influence of the heat transfer at the free surface of a thermally-driven rotating annulus (2024), pp. 1-35

[192] M. Vincze; S. Borcert; U. Achatz et al. Benchmarking in a rotating annulus: a comparative experimental and numerical study of baroclinic wave dynamics, Meteorol. Z., Volume 23 (2014) no. 6, pp. 611-635 | DOI

[193] R. M. B. Young; P. L. Read Predictability of the thermally driven laboratory rotating annulus, Q. J. R. Meteorol. Soc., Volume 142 (2016) no. 695, pp. 911-927 | DOI

[194] I. M. Held 100 Years of Progress in Understanding the General Circulation of the Atmosphere, Meteor. Monogr., Volume 59 (2019), p. 6.1-6.23 | DOI

[195] G. I. Taylor VIII. Stability of a viscous liquid contained between two rotating cylinders, Philos. Trans. R. Soc. Lond., Ser. A, Volume 223 (1923) no. 605-615, pp. 289-343 | DOI

[196] R. M. Lueptow; R. Hollerbach; E. Serre Taylor–Couette and related flows on the centennial of Taylor’s Philosophical Transactions paper: part 1, Philos. Trans. R. Soc. Lond., Ser. A, Volume 381 (2023) no. 2243, 20220140 | DOI

[197] R. Hollerbach; R. M. Lueptow; E. Serre Taylor-Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper: part 2, Philos. Trans. R. Soc. Lond., Ser. A, Volume 381 (2023) no. 2246, 20220359 | DOI

[198] F. Exner Über die Bildung von Windhosen und Zyklonen, Sitzungs Ber. Akad. Wiss. Wien, Abt. IIa, Volume 132 (1923), pp. 1-16

[199] D. Fultz; R. R. Long; G. V. Owens; W. Bohan; R. Kaylor; J. Weil Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions, Meteorological Monographs, 4, Springer, 1959 | DOI

[200] T.. Dauxois; T. Peacock; P. Bauer; C. P. Caulfield; C. Cenedese et al. Confronting Grand Challenges in environmental fluid mechanics, Phys. Rev. Fluids, Volume 6 (2021) no. 2, 020501 | DOI

[201] S. Abide; S. Viazzo; I. Raspo; A. Randriamampianina Higher-order compact scheme for high-performance computing of stratified rotating flows, Comput. Fluids, Volume 174 (2018), pp. 300-310 | DOI

[202] G. Meletti; S. Abide; S. Viazzo; U. Harlander A parameter study of strato-rotational low-frequency modulations: impacts on momentum transfer and energy distribution, Philos. Trans. R. Soc. Lond., Ser. A, Volume 381 (2023) no. 2246, 20220297 | DOI

[203] T. Seelig; U. Harlander; R. Faulwetter; C. Egbers Irregularity and singular vector growth of the differentially heated rotating annulus flow, Theor. Comput. Fluid Dyn., Volume 27 (2013) no. 3, pp. 415-432 | DOI

[204] M. Hoff; U. Harlander; C. Egbers Empirical singular vectors of baroclinic flows deduced from experimental data of a differentially heated rotating annulus, Meteorol. Z., Volume 23 (2015) no. 6, pp. 581-597 | DOI

[205] P. J. Schmid Nonmodal Stability Theory, Ann. Rev. Fluid Mech., Volume 39 (2007), pp. 129-162 | DOI

[206] B. R. Sutherland; T. Dauxois; T. Peacock Internal waves in laboratory experiments, Modelling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (T. von Larcher; P. D. Williams, eds.), American Geophysical Union, 2015, pp. 193-212 | DOI

[207] T. Caudwell; J.-B. Flór; M. E. Negretti Convection at an isothermal wall in an enclosure and establishment of stratification, J. Fluid Mech., Volume 799 (2016), p. 448-–475 | DOI

[208] A. Schröder; D. Schanz 3D Lagrangian Particle Tracking in Fluid Mechanics, Ann. Rev. Fluid Mech., Volume 55 (2023) no. 1, pp. 511-540 | DOI

[209] B. R. Sutherland; M. DiBenedetto; A. Kaminski; T. van den Bremer Fluid dynamics challenges in predicting plastic pollution transport in the ocean: A perspective, Phys. Rev. Fluids, Volume 8 (2023) no. 7, 070701 | DOI

Cited by Sources:

Comments - Policy