In the mid-latitude atmosphere, synoptic eddies carry heat and momentum towards the poles and are hence a major element shaping weather and climate. The eddies are due to baroclinic instability caused by a supercritical vertical wind shear, which in turn is due to a supercritical meridional temperature gradient. Since the 1950s this crucial instability has systematically been studied with the thermally driven rotating annulus laboratory experiment. In this review, we summarize the research on baroclinic instability from the experimenter’s perspective covering a period of about three quarters of a century. The fact that it was possible to tie in with the field of atmospheric dynamics, right from the start in the 1950s, makes the experiment unique compared to other experiments representing geophysical flow phenomena. The applications span a wide range of topics, e.g., regime transitions and the route to turbulence in the presence of rotation, or geostrophic turbulence, internal wave generation at baroclinic fronts, tests of operational weather forecasting methods, extreme value distributions with regard to climate, and more. In view of new measurement methods and data processing techniques, the baroclinic instability experiment will continue to be an important complement to numerical methods in the future.
Dans l’atmosphère des latitudes moyennes, les tourbillons synoptiques transportent la chaleur et élan vers les pôles et constituent donc un élément majeur du temps et du climat. Les tourbillons sont dus à l’instabilité barocline provoquée par un cisaillement vertical du vent supercritique, lui-même dû à un gradient de température méridien supercritique. Depuis les années 1950, cette instabilité cruciale a été systématiquement étudiée à l’aide de l’expérience de laboratoire de l’anneau rotatif à entraînement thermique. Dans cette revue, nous résumons les recherches sur l’instabilité barocline du point de vue de l’expérimentateur, sur une période d’environ trois quarts de siècle. Le fait qu’il ait été possible d’établir un lien avec le domaine de la dynamique atmosphérique, dès le début dans les années 1950, rend l’expérience unique par rapport à d’autres expériences utilisées pour examiner les phénomènes d’écoulements géophysiques. Les applications couvrent un large éventail de sujets, par exemple les transitions de régime et la voie vers la turbulence géostrophique, la génération d’ondes internes sur les fronts baroclines, les tests de méthodes opérationnelles de prévision météorologique, les distributions de valeurs extrêmes en ce qui concerne le climat, etc. Compte tenu des nouvelles méthodes de mesure et des techniques de traitement des données, l’expérience sur l’instabilité barocline restera à l’avenir un complément important des méthodes numériques.
Revised:
Accepted:
Online First:
Mot clés : Instabilité barocline, courant-jets, ondes de Eady, ondes de Rossby
Uwe Harlander 1; Michael V. Kurgansky 2; Kevin Speer 3; Miklos Vincze 4
@article{CRPHYS_2024__25_S3_A3_0, author = {Uwe Harlander and Michael V. Kurgansky and Kevin Speer and Miklos Vincze}, title = {Baroclinic instability from an experimental perspective}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.198}, language = {en}, note = {Online first}, }
TY - JOUR AU - Uwe Harlander AU - Michael V. Kurgansky AU - Kevin Speer AU - Miklos Vincze TI - Baroclinic instability from an experimental perspective JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.198 LA - en ID - CRPHYS_2024__25_S3_A3_0 ER -
Uwe Harlander; Michael V. Kurgansky; Kevin Speer; Miklos Vincze. Baroclinic instability from an experimental perspective. Comptes Rendus. Physique, Online first (2024), pp. 1-48. doi : 10.5802/crphys.198.
[1] Experimental analogies to atmospheric motions, Compendium of meteorology (T. F. Malone, ed.), American Meteorological Society, Boston, MA, 1951, pp. 1235–-1248 | DOI
[2] A preliminary report on experiments with thermally reproduced lateral mixing in a rotating hemispherical shell of liquid, J. Atmos. Sci., Volume 6 (1949), pp. 17-33
[3] Geophysical flows as dynamical systems: the influence of Hide’s experiments, Astron. Geophys., Volume 51 (2010) no. 4, p. 4.28-4.35 | DOI
[4] The dynamics of long waves in a baroclinic westerly current, J. Atmos. Sci., Volume 4 (1947), p. 136-–162
[5] Long waves and cyclone waves, Tellus, Volume 1 (1949) no. 3, pp. 33-52 | DOI
[6] Commentaries Concerning Research on the General Circulation, Tellus, Volume 6 (1954) no. 3, pp. 268-272 | DOI
[7] Baroclinic waves in a rotating fluid subject to internal heating, Philos. Trans. R. Soc. Lond., Ser. A, Volume 268 (1970) no. 1186, pp. 201-232 | DOI
[8] Baroclinic instability in an eccentric annulus, J. Fluid Mech., Volume 77 (1976) no. 4, p. 769-–788 | DOI
[9] On stratified flow over a topographic ridge in a rotating annulus, Geophys. Astrophys. Fluid Dyn., Volume 118 (2024) no. 1, pp. 25-70 | DOI
[10] Wave Dispersion in a Rotating, Differentially Heated Cylindrical Annulus Of Fluid, J. Atmos. Sci., Volume 25 (1968) no. 3, pp. 361-371 | DOI
[11] PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Exp. Fluids, Volume 51 (2011), pp. 37-49 | DOI
[12] Kinematic Properties of Wave Amplitude Vacillation in a Thermally Driven Rotating Fluid, J. Atmos. Sci., Volume 46 (1989) no. 17, pp. 2716-2730 | DOI
[13] An Experimental Study of Baroclinic Flows with and without Two-Wave Bottom Topography, J. Atmos. Sci., Volume 43 (1986) no. 22, pp. 2585-2599
[14] Transition to geostrophic turbulence in a rotating differentially heated annulus of fluid, J. Fluid Mech., Volume 145 (1984), p. 377-–403 | DOI
[15] et al. Progress in Characterizing the Route to Geostrophic Turbulence and Redesigning Thermally Driven Rotating Annulus Experiments, Theor. Comput. Fluid Dyn., Volume 9 (1997), pp. 253-267 | DOI
[16] Wave interactions and the transition to chaos of baroclinic waves in a thermally driven rotating annulus, Philos. Trans. R. Soc. Lond., Ser. A, Volume 355 (1997) no. 1722, pp. 101-153 | DOI
[17] Synoptic Features and Energetics of Wave-Amplitude Vacillation in a Rotating, Differentially-Heated Fluid, J. Atmos. Sci., Volume 31 (1974) no. 3, pp. 622-645 | DOI
[18] Amplitude vacillation in baroclinic flows, Modelling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (T. von Larcher; P. D. Williams, eds.) (Geophysical Monograph Series), American Geophysical Union, 2014, pp. 61-81 | DOI
[19] Observations of a barotropic planetary wave in the western North Atlantic, J. Mar. Res., Volume 40 (1982), pp. 543-558
[20] From mixing to geostrophy: Geostrophic turbulence in atmospheres, oceans and the laboratory, Marine Turbulence: Theories, Observations, and Models (H. Z. Baumert; J. Simpson; J. Sündermann, eds.), Cambridge University Press, 2005, pp. 406-422
[21] The Instability of a Baroclinic Vortex, J. Phys. Oceanogr., Volume 3 (1973) no. 1, pp. 61-65 | DOI
[22] Unsteady, Turbulent Convection into a Homogeneous, Rotating Fluid,with Oceanographic Applications, J. Phys. Oceanogr., Volume 24 (1994) no. 5, pp. 865-887 | DOI
[23] Open-ocean convection: Observations, theory, and models, Rev. Geophys., Volume 37 (1999) no. 1, pp. 1-64 | DOI
[24] Transition To Geostrophic Turbulence In The Laboratory, And As A Paradigm In Atmospheres And Oceans, Surv. Geophys., Volume 22 (2001), pp. 265-317 | DOI
[25] General circulation of planetary atmospheres: Insights from rotating annulus and related experiments, Modelling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (T. von Larcher; P. D. Williams, eds.), American Geophysical Union, 2014, pp. 9-44 | DOI
[26] Dynamics and circulation regimes of terrestrial planets, Planet. Space Sci., Volume 59 (2011), pp. 900-914 | DOI
[27] et al. Baroclinic and barotropic instabilities in planetary atmospheres: energetics, equilibration and adjustment, Nonlinear Process. Geophys., Volume 27 (2020) no. 2, pp. 147-173 | DOI
[28] A Laboratory Study of Baroclinic Instability, Geophys. Fluid Dyn., Volume 3 (1972), pp. 181-209 | DOI
[29] Generation of inertia-gravity waves in a baroclinically unstable fluid, Q. J. R. Meteorol. Soc., Volume 126 (2000) no. 570, pp. 3233-3254 | DOI
[30] On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear, J. Fluid Mech., Volume 528 (2005), p. 1-–22 | DOI
[31] et al. New Laboratory Experiments to Study the Large-Scale Circulation and Climate Dynamics, Atmosphere, Volume 14 (2023), 836 | DOI
[32] Thermal convection in a rotating annulus of liquid: effect of viscosity on the transition between axisymmetric and non-axisymmetric flow regimes, J. Atmos. Sci., Volume 22 (1965), pp. 541-558 | DOI
[33] An experimental study of the effects of Prandtl number on thermal convection in a rotating, differentially heated cylindrical annulus of fluid, J. Fluid Mech., Volume 75 (1976) no. 1, p. 81-–112 | DOI
[34] Sloping convection in a rotating fluid, Adv. Phys., Volume 24 (1975) no. 1, pp. 47-100 | DOI
[35] An experimental study of thermal convection in a rotating liquid, Philos. Trans. R. Soc. Lond., Ser. A, Volume 250 (1958) no. 983, pp. 441-478 | DOI
[36] Multiple Zonal Jets in a Differentially Heated Rotating Annulus, J. Phys. Oceanogr., Volume 44 (2014) no. 9, pp. 2273-2291 | DOI
[37] An experimental investigation of blocking by partial barriers in a rotating baroclinic annulus, Geophys. Astrophys. Fluid Dyn., Volume 112 (2018) no. 2, pp. 97-129 | DOI
[38] Simultaneous PIV and thermography measurements of partially blocked flow in a differentially heated rotating annulus, Exp. Fluids, Volume 52 (2012), pp. 1077-1087 | DOI
[39] A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment, Exp. Fluids, Volume 58 (2017) no. 75, 75 | DOI
[40] Experimental study of rotating convection in the presence of bi-directional thermal gradients with localized heating, AIP Adv., Volume 8 (2018) no. 11, 115324 | DOI
[41] A shallow layer laboratory model of large-scale atmospheric circulation, Geophys. Astrophys. Fluid Dyn., Volume 117 (2023) no. 3, pp. 155-176 | DOI
[42] Direct numerical simulation of transitions towards structural vacillation in an air-filled, rotating, baroclinic annulus, Phys. Fluids, Volume 20 (2008) no. 4, 044107 | DOI
[43] Instabilities and small-scale waves within the Stewartson layers of a thermally driven rotating annulus, J. Fluid Mech., Volume 841 (2018), pp. 380–-407 | DOI
[44] A combined laboratory and numerical study of heat transport by baroclinic eddies and axisymmetric flows, J. Fluid Mech., Volume 489 (2003), pp. 301–-323 | DOI
[45] Geophysical Fluid Dynamics, Springer, 1987 | DOI
[46] Baroclinic Instability, Ann. Rev. Fluid Mech., Volume 27 (1995), pp. 419-467 | DOI
[47] Atmospheric and Oceanic Fluid Dynamics. Fundamentals and Large-scale Circulation, Cambridge University Press, 2006 | DOI
[48] Diffusive destabilization of the baroclinic circular vortex, Geophys. Fluid Dyn., Volume 1 (1970), pp. 19-58 | DOI
[49] On the conditions of nonlinear stability of plane stationary curvilinear currents of ideal fluids, Dokl. Akad. Nauk SSSR, Volume 162 (1965) no. 5, pp. 975–-978
[50] On the stability of quasi-geostrophic flow, J. Atmos. Sci., Volume 25 (1968) no. 5, p. 929-–931 | DOI
[51] Integral conservation law for perturbations of zonal flow, and its applications to stability studies, Izv. - Atmos. Ocean. Phys., Volume 7 (1971) no. 9, p. 623-–626
[52] Adiabatic invariants in large-scale atmospheric dynamics, Taylor & Francis, 2002, 222 pages
[53] Baroclinic instability in geophysical fluid dynamics, Physics - Uspekhi., Volume 65 (2022) no. 10, pp. 1039-1070 | DOI
[54] On the stability of internal baroclinic jets in a rotating atmosphere, J. Atmos. Sci., Volume 19 (1962), p. 159-–172 | DOI
[55] The Stability of Currents in the Atmosphere and the Ocean: Part I, J. Atmos. Sci., Volume 21 (1964) no. 2, pp. 201-219 | DOI
[56] Eady edge waves and rapid development, J. Atmos. Sci., Volume 51 (1994) no. 13, pp. 1930–-1946 | DOI
[57] The counter-propagating Rossby-wave perspective on baroclinic instability. I: Mathematical basis, Q. J. R. Meteorol. Soc., Volume 130 (2004) no. 596, p. 211-–231 | DOI
[58] Relating optimal growth to counterpropagating Rossby waves in shear instability, Phys. Fluids, Volume 17 (2005), 064107 | DOI
[59] Generalized Stability Theory. Part I: Autonomous Operators, J. Atmos. Sci., Volume 53 (1996) no. 14, pp. 2025-2040 | DOI
[60] Hydrodynamic and Hydromagnetic Stability, Oxford University Press, 1961
[61] Role of the Ekman friction in the stability of the symmetric regime obtained in a rotating annulus, J. Atmos. Sci., Volume 21 (1964), p. 291-–299 | DOI
[62] Generalized Eady waves and Ekman pumping, J. Atmos. Sci., Volume 31 (1974), pp. 1768-1776 | DOI
[63] A problem in baroclinic stability, Q. J. R. Meteorol. Soc., Volume 86 (1960) no. 368, pp. 237-251 | DOI
[64] Uniform potential vorticity flow: Part I—Theory of wave interactions and two-dimensional turbulence, J. Atmos. Sci., Volume 35 (1978), p. 774-–783 | DOI
[65] Surface quasi-geostrophic dynamics, J. Fluid Mech., Volume 282 (1995), pp. 1-20 | DOI
[66] A simple three-dimensional model for the study of large-scale flow patterns, J. Atmos. Sci., Volume 8 (1951), p. 381-–394
[67] The mechanics of vacillation, J. Atmos. Sci., Volume 20 (1963) no. 3, p. 448-–465 | DOI
[68] Convection in Rotating Fluids, Kluwer Academic Publishers, 1995 | DOI
[69] The role of potential vorticity in symmetric stability and instability, Q. J. R. Meteorol. Soc., Volume 100 (1974), p. 480-–482 | DOI
[70] On the inertial stability of the equatorial middle atmosphere, J. Atmos. Sci., Volume 38 (1981), pp. 2354-2364 | DOI
[71] Testing the limits of quasi-geostrophic theory: application to observed laboratory flows outside the quasi-geostrophic regime, J. Fluid Mech., Volume 649 (2010), p. 187-–203 | DOI
[72] A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus, Q. J. R. Meteorol. Soc., Volume 111 (1985) no. 467, pp. 131-154 | DOI
[73] A vacillation in atmospheric energy parameters, J. Atmos. Sci., Volume 33 (1976) no. 11, pp. 2079-2093 | DOI
[74] Poleward heat transport by the atmospheric heat engine, Nature, Volume 415 (2002), pp. 774-777 | DOI
[75] Thermal Convection in a Rotating Fluids Annulus: Temperature, Heat Flow and Flow Field Observations in the Upper Symmetric Regime, J. Atmos. Sci., Volume 22 (1965) no. 2, pp. 185-195 | DOI
[76] Assessing eddy parameterization schemes in a differentially heated rotating annulus experiment, Ocean Model., Volume 32 (2010) no. 3, pp. 118-131 (The magic of modelling: A special volume commemorating the contributions of Peter D. Killworth – Part 2) | DOI
[77] Time-Dependent Modes of Behavior of Thermally Driven Rotating Fluids, J. Atmos. Sci., Volume 37 (1980) no. 10, pp. 2129-2149 | DOI
[78] Effect of a radial barrier on the convective flow in a rotating fluid annulus, J. Geophys. Res. (1896-1977), Volume 73 (1968) no. 22, pp. 6887-6895 | DOI
[79] Thermal convection in a rotating fluid annulus blocked by a radial barrier, Geophys. Astrophys. Fluid Dyn., Volume 87 (1998) no. 3-4, pp. 215-252 | DOI
[80] et al. The Drake Passage opening from an experimental fluid dynamics point of view, Sci. Rep., Volume 11 (2021), 19951 | DOI
[81] Baroclinic annulus waves, J. Fluid Mech., Volume 49 (1971) no. 3, pp. 417–-449 | DOI
[82] The vortex gas scaling regime of baroclinic turbulence, Proc. Natl. Acad. Sci. USA, Volume 117 (2020) no. 9, pp. 4491-4497 | DOI
[83] Transport and emergent stratification in the equilibrated Eady model: the vortex-gas scaling regime, J. Fluid Mech., Volume 948 (2022), A31 | DOI
[84] et al. Atmospheric Gravity Waves: Processes and Parameterization, J. Atmos. Sci., Volume 81 (2024) no. 2, pp. 237-262 | DOI
[85] Some experiments on thermal convection in a rotating liquid, Q. J. R. Meteorol. Soc., Volume 79 (1953) no. 339, p. 161-161 | DOI
[86] Two kinds of vacillation in rotating laboratory experiments, Mon. Wea. Rev., Volume 95 (1967) no. 2, pp. 75-82 | DOI
[87] A Numerical Study of Tilted-Trough Vacillation Observed in a Differentially Heated Rotating Fluid Annulus, J. Meteorol. Soc. Jpn. Ser. II, Volume 68 (1990) no. 4, pp. 447-460 | DOI
[88] Characteristics of Amplitude Vacillation in a Rotating, Differentially Heated Fluid Determined by a Multi-Probe Technique, J. Atmos. Sci., Volume 26 (1969) no. 1, pp. 100-108 | DOI
[89] Finite Amplitude Baroclinic Instability, Ann. Rev. Fluid Mech., Volume 11 (1979) no. 1, pp. 147-172 | DOI
[90] Atmospheric Vacillations in a General Circulation Model I: The Large-Scale Energy Cycle, J. Atmos. Sci., Volume 35 (1978) no. 7, pp. 1133-1143 | DOI
[91] Finite-Amplitude Baroclinic Waves, J. Atmos. Sci., Volume 27 (1970) no. 1, pp. 15-30 | DOI
[92] On the periods of amplitude vacillations, J. Meteorol. Soc. Jpn. Ser. II, Volume 50 (1972), pp. 214-225 | DOI
[93] Oscillatory damping in long-time evolution of the surface quasi-geostrophic equations with generalized viscosity: a numerical study, Nonlinearity, Volume 23 (2010) no. 12, 3029 | DOI
[94] Finite-Amplitude Baroclinic Waves with Small Dissipation, J. Atmos. Sci., Volume 28 (1971) no. 4, pp. 587-597 | DOI
[95] A Weakly Nonlinear Theory of Amplitude Vacillation and Baroclinic Waves, J. Atmos. Sci., Volume 41 (1984) no. 22, pp. 3314-3330 | DOI
[96] The Weakly Nonlinear Dynamics of a Planetary Green Mode and Atmospheric Vacillation, J. Atmos. Sci., Volume 43 (1986) no. 12, pp. 1275-1287 | DOI
[97] Baroclinic instability of time-dependent currents, J. Fluid Mech., Volume 490 (2003), pp. 189–-215 | DOI
[98] Inner-core vacillation cycles during the intensification of Hurricane Katrina, Q. J. R. Meteorol. Soc., Volume 137 (2011) no. 657, pp. 829-844 | DOI
[99] An experimental study of regime transitions in a differentially heated baroclinic annulus with flat and sloping bottom topographies, Nonlinear Process. Geophys., Volume 21 (2014) no. 1, pp. 237-250 | DOI
[100] A laboratory study of global-scale wave interactions in baroclinic flow with topography II: vacillations and low-frequency variability, Geophys. Astrophys. Fluid Dyn., Volume 109 (2015) no. 4, pp. 359-390 | DOI
[101] Predictability of the thermally driven laboratory rotating annulus, Q. J. R. Meteorol. Soc., Volume 142 (2016) no. 695, pp. 911-927 | DOI
[102] Subseasonal Vacillations in the Winter Stratosphere, Geophys. Res. Lett., Volume 47 (2020) no. 9, e2020GL087766 | DOI
[103] Rotating Annulus Flows and Baroclinic Waves, Rotating fluids in Geophysical and Industrial Applications (E. J. Hopfinger, ed.), Springer, 1992, pp. 185-214 | DOI
[104] Inertial ranges in two-dimensional turbulence, Phys. Fluids, Volume 10 (1967), pp. 1417-1423 | DOI
[105] On the spectrum and decay of random two-dimensional vorticity distributions at large reynolds number, Stud. Appl. Math., Volume 50 (1971) no. 4, pp. 377-383 | DOI
[106] Turbulence, waves, and jets in a differentially heated rotating annulus experiment, Phys. Fluids, Volume 20 (2008) no. 12, 126602 | DOI
[107] Transition from Geostrophic Flows to Inertia–Gravity Waves in the Spectrum of a Differentially Heated Rotating Annulus Experiment, J. Atmos. Sci., Volume 77 (2020) no. 8, pp. 2793-2806 | DOI
[108] Baroclinic waves in a container with sloping end walls, Philos. Trans. R. Soc. Lond., Ser. A, Volume 278 (1975) no. 1284, pp. 397-445 | DOI
[109] A convective model for the zonal jets in the atmospheres of Jupiter and Saturn, Nature, Volume 367 (1994), pp. 711-713 | DOI
[110] et al. An experimental study of multiple zonal jet formation in rotating, thermally driven convective flows on a topographic beta-plane, Phys. Fluids, Volume 27 (2015) no. 8, 085111 | DOI
[111] The Origin of Deep Zonal Flows in the Brazil Basin, J. Phys. Oceanogr., Volume 33 (2003) no. 3, pp. 580-599
[112] Importance of the eastern Indian Ocean for the abyssal Pacific, J. Geophys. Res. Oceans, Volume 107 (2002) no. C12, p. 12-1–12-14 | DOI
[113] Gyres and Jets: Inversion of Tracer Data for Ocean Circulation Structure, J. Phys. Oceanogr., Volume 38 (2008) no. 6, pp. 1180-1202 | DOI
[114] Zonal jets at the laboratory scale: hysteresis and Rossby waves resonance, J. Fluid Mech., Volume 910 (2021), A18 | DOI
[115] The development of chaotic advection, Phys. Fluids, Volume 14 (2002) no. 4, pp. 1315-1325 | DOI
[116] A Simple Kinematic Mechanism for Mixing Fluid Parcels across a Meandering Jet, J. Phys. Oceanogr., Volume 21 (1991) no. 1, pp. 173-180 | DOI
[117] Lagrangian Transport in Geophysical Jets and Waves, Interdisciplinary Applied Mathematics, 31, Springer, 2006 | DOI
[118] Building transport models from baroclinic wave experimental data, Phys. Fluids, Volume 36 (2024) no. 1, 016611 | DOI
[119] Chaotic Mixing and Transport Barriers in an Idealized Stratospheric Polar Vortex, J. Atmos. Sci., Volume 58 (2001) no. 17, pp. 2616-2629 | DOI
[120] Isentropic Transport within the Antarctic Polar-Night Vortex: Rossby Wave Breaking Evidence and Lagrangian Structures, J. Atmos. Sci., Volume 70 (2013) no. 9, pp. 2982-3001 | DOI
[121] Twenty-First Century Trends in Mixing Barriers and Eddy Transport in the Lower Stratosphere, Geophys. Res. Lett., Volume 47 (2020) no. 21, e2020GL089548 | DOI
[122] On the Antarctic ozone hole, J. Atmos. Sol.-Terr. Phys., Volume 51 (1989) no. 1, pp. 29-43 (Cedar Science-Part II) | DOI
[123] Structured pathways in the turbulence organizing recent oil spill events in the Eastern Mediterranean, Sci. Rep., Volume 12 (2022) no. 1, 3662 | DOI
[124] Transport Barriers and Coherent Structures in Flow Data, Cambridge University Press, 2023 | DOI
[125] Laboratory model of a planetary eastward jet, Nature, Volume 337 (1989), pp. 58-61 | DOI
[126] Chaos and mixing in a geostrophic flow, Phys. Fluids, A, Volume 3 (1991) no. 5, pp. 1243-1249 | DOI
[127] Chaotic Lagrangian Motion and Heat Transport in a Steady, Baroclinic Annulus Wave, J. Meteorol. Soc. Jpn. Ser. II, Volume 72 (1994) no. 4, pp. 569-587 | DOI
[128] Laboratory Experiments of Lagrangian Motions in a Steady Baroclinic Wave -Internal Structures of Vortices-, J. Meteorol. Soc. Jpn., Volume 73 (1995) no. 1, pp. 37-46 | DOI
[129] Meridional Flow Field of Axisymmetric Flows in a Rotating Annulus, J. Atmos. Sci., Volume 57 (2000) no. 18, pp. 3109-3121 | DOI
[130] On the stirring properties of the thermally-driven rotating annulus, Phys. D: Nonlinear Phenom., Volume 268 (2014), pp. 50-58 | DOI
[131] Hidden Geometry of Ocean Flows, Phys. Rev. Lett., Volume 105 (2010) no. 3, 038501 | DOI
[132] Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013) no. 12, pp. 3530-3557 | DOI
[133] et al. Dynamics of passive tracers in the atmosphere: Laboratory experiments and numerical tests with reanalysis wind fields, Phys. Rev. E, Volume 82 (2010) no. 4, 046308 | DOI
[134] The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields, Q. J. R. Meteorol. Soc., Volume 109 (1983) no. 462, pp. 737–-761 | DOI
[135] Baroclinic blocking, Geophys. Res. Lett., Volume 49 (2022), e2022GL097791 | DOI
[136] Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems, J. Atmos. Sci., Volume 37 (1980) no. 6, pp. 1157-1176 | DOI
[137] Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci., Volume 36 (1979) no. 7, pp. 1205-1216 | DOI
[138] A Spectral Energetics Analysis of Atmospheric Blocking, Mon. Wea. Rev., Volume 110 (1982) no. 9, pp. 1146-1165 | DOI
[139] Blocking action in the middle troposphere and its effect upon regional climate. I An aerological study of blocking action, Tellus, Volume 2 (1950) no. 3, p. 196-–211 | DOI
[140] A new combined detection algorithm for blocking and subtropical ridges, J. Climate, Volume 34 (2021) no. 18, pp. 7735–-7758 | DOI
[141] Dynamic conditions for the origin of droughts and other large-scale weather anomalies, Meteorol. Gidrol. (in Russian), Volume 10 (1984), pp. 5-13
[142] Low-order point vortex models of atmospheric blocking, Meteorol. Atmos. Phys., Volume 73 (2000), pp. 127-138 | DOI
[143] Applications of point vortex equilibria: blocking events and the stability of the polar vortex, Tellus A, Volume 67 (2015), 29184 | DOI
[144] The formation of coherent structures in the context of blocking, J. Atmos. Sci., Volume 56 (1999), pp. 3640-3662 | DOI
[145] The Nature and Theory of the General Circulation of the Atmosphere, World Meteorological Organization, 1967, 161 pages
[146] On the dynamics of certain types of blocking waves, J. Chin. Geophys. Soc., Volume 2 (1950), pp. 1–-13
[147] Weather regimes in past climate atmospheric general circulation model simulations, Clim. Dyn., Volume 15 (1999), pp. 773-793 | DOI
[148] Winter amplification of the European Little Ice Age cooling by the subpolar gyre, Sci. Rep., Volume 7 (2017), 9981 | DOI
[149] Evidence for a wavier jet stream in response to rapid Arctic warming, Environ. Res. Lett., Volume 10 (2015), 014005 | DOI
[150] et al. Blocking and its response to climate change, Curr. Clim. Change Rep., Volume 4 (2018), pp. 287–-300 | DOI
[151] Atmospheric blocking and changes in its frequency in the 21st century simulated with the ensemble of climate models, Russ. Meteorol. Hydrol., Volume 44 (2019) no. 6, p. 369-–377 | DOI
[152] A simple model of blocking action over a hemisphere, Theor. Appl. Climatol., Volume 147 (2022), pp. 65-71 | DOI
[153] Baroclinic instability and large-scale wave propagation in a planetary-scale atmosphere, Q. J. R. Meteorol. Soc., Volume 148 (2022), p. 809-–825 | DOI
[154] Geostrophic motion, Rev. Geophys., Volume 1 (1963) no. 2, p. 123-–176 | DOI
[155] Transitions Between Blocked and Zonal Flows in a Rotating Annulus with Topography, Science, Volume 278 (1997) no. 5343, pp. 1598-1601 | DOI
[156] Intermittent baroclinic instability and fluctuations in geophysical circulations, Nature, Volume 316 (1985) no. 2, pp. 801-803 | DOI
[157] A laboratory study of global-scale wave interactions in baroclinic flow with topography I: multiple flow regimes, Geophys. Astrophys. Fluid Dyn., Volume 105 (2011) no. 2-3, pp. 128-160 | DOI
[158] An experimental investigation into topographic resonance in a baroclinic rotating annulus, Geophys. Astrophys. Fluid Dyn., Volume 109 (2015) no. 4, pp. 391-421 | DOI
[159] Thermal versus mechanical topography: an experimental investigation in a rotating baroclinic annulus, Geophys. Astrophys. Fluid Dyn., Volume 114 (2020) no. 6, pp. 763-797 | DOI
[160] et al. The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ., Volume 3 (2022) no. 1, 168 | DOI
[161] Nonlinear statistics of daily temperature fluctuations reproduced in a laboratory experiment, Phys. Rev. E, Volume 76 (2007) no. 3, 037301 | DOI
[162] Multifractal properties of snapshot attractors of random maps, Phys. Rev. A, Volume 41 (1990) no. 2, pp. 784-799 | DOI
[163] Climate dynamics and fluid mechanics: Natural variability and related uncertainties, Phys. D: Nonlinear Phenom., Volume 237 (2008) no. 14-17, pp. 2111-2126 | DOI
[164] Temperature fluctuations in a changing climate: an ensemble-based experimental approach, Sci. Rep., Volume 7 (2017) no. 1, p. 254 | DOI
[165] Jet stream variability in a polar warming scenario – a laboratory perspective, Weather Clim. Dynam., Volume 3 (2022), p. 937-–950 | DOI
[166] et al. An Explanation for the Metric Dependence of the Midlatitude Jet-Waviness Change in Response to Polar Warming, Geophys. Res. Lett., Volume 50 (2023) no. 21, e2023GL105132 | DOI
[167] Extreme temperature fluctuations in laboratory models of the mid-latitude atmospheric circulation, Sci. Rep., Volume 13 (2023) no. 1, 20904 | DOI
[168] Probability distribution of extreme events in a baroclinic wave laboratory experiment, Fluids, Volume 7 (2022) no. 8, 274 | DOI
[169] Large-scale ocean circulation in the Southern Hemisphere with closed and open Drake Passage–A laboratory minimal model approach, Deep-Sea Res. II: Top. Stud. Oceanogr., Volume 160 (2019), pp. 16-24 | DOI
[170] et al. The Drake Passage opening from an experimental fluid dynamics point of view, Sci. Rep., Volume 11 (2021) no. 1, 19951 | DOI
[171] Generation of inertia–gravity waves in the rotating thermal annulus by a localised boundary layer instability, Geophys. Astrophys. Fluid Dyn., Volume 105 (2011) no. 2-3, pp. 161-181 | DOI
[172] Instabilities of a buoyancy-driven system, J. Fluid Mech., Volume 35 (1969) no. 4, pp. 775–-798 | DOI
[173] Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus, J. Fluid Mech., Volume 782 (2015), p. 144–177 | DOI
[174] A transition from Kelvin–Helmholtz instabilities to propagating wave instabilities, Phys. Fluids, A, Volume 4 (1992) no. 9, pp. 1990-1997 | DOI
[175] On the dynamics of revolving fluids, Proc. R. Soc. Lond., Ser. A, Volume 93, (648) (1917), pp. 148-154 (http://rspa.royalsocietypublishing.org/content/93/648/148.full.pdf)
[176] Instabilities of the sidewall boundary layer in a differentially driven rotating cylinder, Phys. Fluids, Volume 8 (1996) no. 3, pp. 692-696 | DOI
[177] Recent progress in modeling imbalance in the atmosphere and ocean, Phys. Rev. Fluids, Volume 4 (2019) no. 1, 010501 | DOI
[178] Gravity wave emission in an atmosphere-like configuration of the differentially heated rotating annulus experiment, J. Fluid Mech., Volume 758 (2014), pp. 287–-311 | DOI
[179] A new atmospheric-like differentially heated rotating annulus configuration to study gravity wave emission from jets and fronts, Exp. Fluids, Volume 61 (2020), 2 | DOI
[180] Spontaneous generation and impact of inertia-gravity waves in a stratified, two-layer shear flow, Geophys. Res. Lett., Volume 30 (2003) no. 24, 2255 | DOI
[181] Gravity wave radiation from vortex trains in rotating shallow water, J. Fluid Mech., Volume 281 (1994), pp. 81–-118 | DOI
[182] Inertia–Gravity Waves Emitted from Balanced Flow: Observations, Properties, and Consequences, J. Atmos. Sci., Volume 65 (2008) no. 11, pp. 3543-3556 | DOI
[183] Frontal instabilities and waves in a differentially rotating fluid, J. Fluid Mech., Volume 685 (2011), p. 532-–542 | DOI
[184] Generation of Inertia–Gravity Waves in a Simulated Life Cycle of Baroclinic Instability, J. Atmos. Sci., Volume 52 (1995) no. 21, pp. 3695-3716 | DOI
[185] Wave–vortex decomposition of one-dimensional ship-track data, J. Fluid Mech., Volume 756 (2014), pp. 1007-1026 | DOI
[186] Weakly or Strongly Nonlinear Mesoscale Dynamics Close to the Tropopause?, J. Atmos. Sci., Volume 75 (2018) no. 4, pp. 1215-1229 | DOI
[187] Baroclinic, Kelvin and inertia-gravity waves in the barostrat instability experiment, Geophys. Astrophys. Fluid Dyn., Volume 112 (2018) no. 3, pp. 175-206 | DOI
[188] Topographic Effects in Stratified Flows, Cambridge University Press, 2022
[189] Coupled convection and internal gravity waves excited in water around its density maximum at , Phys. Rev. Fluids, Volume 5 (2020) no. 2, 024801 | DOI
[190] Experimental study of the penetrative convection in gases, Phys. Rev. Fluids, Volume 8 (2023) no. 10, 103501 | DOI
[191] On the influence of the heat transfer at the free surface of a thermally-driven rotating annulus (2024), pp. 1-35
[192] et al. Benchmarking in a rotating annulus: a comparative experimental and numerical study of baroclinic wave dynamics, Meteorol. Z., Volume 23 (2014) no. 6, pp. 611-635 | DOI
[193] Predictability of the thermally driven laboratory rotating annulus, Q. J. R. Meteorol. Soc., Volume 142 (2016) no. 695, pp. 911-927 | DOI
[194] 100 Years of Progress in Understanding the General Circulation of the Atmosphere, Meteor. Monogr., Volume 59 (2019), p. 6.1-6.23 | DOI
[195] VIII. Stability of a viscous liquid contained between two rotating cylinders, Philos. Trans. R. Soc. Lond., Ser. A, Volume 223 (1923) no. 605-615, pp. 289-343 | DOI
[196] Taylor–Couette and related flows on the centennial of Taylor’s Philosophical Transactions paper: part 1, Philos. Trans. R. Soc. Lond., Ser. A, Volume 381 (2023) no. 2243, 20220140 | DOI
[197] Taylor-Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper: part 2, Philos. Trans. R. Soc. Lond., Ser. A, Volume 381 (2023) no. 2246, 20220359 | DOI
[198] Über die Bildung von Windhosen und Zyklonen, Sitzungs Ber. Akad. Wiss. Wien, Abt. IIa, Volume 132 (1923), pp. 1-16
[199] Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions, Meteorological Monographs, 4, Springer, 1959 | DOI
[200] et al. Confronting Grand Challenges in environmental fluid mechanics, Phys. Rev. Fluids, Volume 6 (2021) no. 2, 020501 | DOI
[201] Higher-order compact scheme for high-performance computing of stratified rotating flows, Comput. Fluids, Volume 174 (2018), pp. 300-310 | DOI
[202] A parameter study of strato-rotational low-frequency modulations: impacts on momentum transfer and energy distribution, Philos. Trans. R. Soc. Lond., Ser. A, Volume 381 (2023) no. 2246, 20220297 | DOI
[203] Irregularity and singular vector growth of the differentially heated rotating annulus flow, Theor. Comput. Fluid Dyn., Volume 27 (2013) no. 3, pp. 415-432 | DOI
[204] Empirical singular vectors of baroclinic flows deduced from experimental data of a differentially heated rotating annulus, Meteorol. Z., Volume 23 (2015) no. 6, pp. 581-597 | DOI
[205] Nonmodal Stability Theory, Ann. Rev. Fluid Mech., Volume 39 (2007), pp. 129-162 | DOI
[206] Internal waves in laboratory experiments, Modelling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (T. von Larcher; P. D. Williams, eds.), American Geophysical Union, 2015, pp. 193-212 | DOI
[207] Convection at an isothermal wall in an enclosure and establishment of stratification, J. Fluid Mech., Volume 799 (2016), p. 448-–475 | DOI
[208] 3D Lagrangian Particle Tracking in Fluid Mechanics, Ann. Rev. Fluid Mech., Volume 55 (2023) no. 1, pp. 511-540 | DOI
[209] Fluid dynamics challenges in predicting plastic pollution transport in the ocean: A perspective, Phys. Rev. Fluids, Volume 8 (2023) no. 7, 070701 | DOI
Cited by Sources:
Comments - Policy