[L’intrication quantique par gravité comme test des modèles d’effondrement gravitationnel à la Diósi et Penrose]
I provide a simple argument that the experimental observation of gravitationally induced entanglement rules out the validity of current gravitational collapse models. This is consistent with the recent claim to the contrary in [Trillo and Navascués, Phys. Rev. D, 111, (2025)], if one takes into account the physical constraints of actual table-top gravity experiments.
Je présente un argument simple pour montrer que l’observation expérimentale de l’intrication induite par la gravitation exclut la validité des modèles actuels d’effondrement gravitationnel. Ceci est cohérent avec l’affirmation récente du contraire dans [Trillo et Navascués, Phys. Rev. D, 111, (2025)], si l’on prend en compte les contraintes physiques des expériences gravitationnelles réelles sur table.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Optomécanique quantique, physique quantique gravitationnelle, détection quantique
Markus Aspelmeyer  1 , 2
CC-BY 4.0
@article{CRPHYS_2026__27_G1_1_0,
author = {Markus Aspelmeyer},
title = {Quantum entanglement by gravity as tests of gravitational collapse models \protect\emph{\`a la} {Di\'osi} and {Penrose}},
journal = {Comptes Rendus. Physique},
pages = {1--6},
year = {2026},
publisher = {Acad\'emie des sciences, Paris},
volume = {27},
doi = {10.5802/crphys.270},
language = {en},
}
Markus Aspelmeyer. Quantum entanglement by gravity as tests of gravitational collapse models à la Diósi and Penrose. Comptes Rendus. Physique, Volume 27 (2026), pp. 1-6. doi: 10.5802/crphys.270
[1] Decoherence and the quantum-to-classical transition, The Frontiers Collection, Springer, 2008, L121101 | DOI
[2] Quantum superposition at the half-metre scale, Nature, Volume 528 (2015) no. 7583, pp. 530-533 | DOI
[3] Quantum superposition of molecules beyond 25 kDa, Nat. Phys., Volume 15 (2019) no. 12, pp. 1242-1245 | DOI
[4] Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010) no. 7289, pp. 697-703 | DOI
[5] Cooling of a levitated nanoparticle to the motional quantum ground state, Science, Volume 367 (2020) no. 6480, pp. 892-895 | DOI
[6] Schrödinger cat states of a 16-microgram mechanical oscillator, Science, Volume 380 (2023) no. 6642, pp. 274-278 | DOI
[7] Nonclassical correlations between photons and phonons of center-of-mass motion of a mechanical oscillator, Phys. Rev. Lett., Volume 133 (2024), 173605, 6 pages | DOI
[8] General relativity, University of Chicago Press, 1984, 173605 | DOI
[9] General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D, Volume 50 (1994) no. 6, pp. 3874-3888 | DOI | MR
[10] Quantum field theory and the standard model, Cambridge University Press, 2013 | DOI
[11] The role of gravitation in physics. Report from the 1957 Chapel Hill Conference (Cécile M. DeWitt; Dean Rickles, eds.), Max Planck Research Library for the History and Development of Knowledge, 2011 | DOI
[12] Testing quantum superpositions of the gravitational field with Bose–Einstein condensates, Phys. Rev. A, Volume 71 (2005) no. 2, 024101, 2 pages | DOI
[13] On-chip quantum interference of a superconducting microsphere, Quantum Sci. Technol., Volume 3 (2018) no. 2, 025001, 024101, 25 pages | DOI | Zbl
[14] Spin entanglement witness for quantum gravity, Phys. Rev. Lett., Volume 119 (2017) no. 24, 240401, 025001, 6 pages | DOI
[15] Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity, Phys. Rev. Lett., Volume 119 (2017) no. 24, 240402, 240401, 5 pages | DOI | MR
[16] On the possibility of laboratory evidence for quantum superposition of geometries, Phys. Lett. B, Volume 792 (2019), 240402, pp. 64-68 | DOI
[17] Quantum effects in gravity beyond the Newton potential from a delocalized quantum source, Phys. Rev. X, Volume 15 (2025), 031063, 19 pages | DOI | MR
[18] Gravitation and quantum-mechanical localization of macro-objects, Phys. Lett. A, Volume 105 (1984) no. 4–5, 031063, pp. 199-202 | DOI
[19] Notes on certain Newton gravity mechanisms of wavefunction localization and decoherence, J. Phys. A. Math. Theor., Volume 40 (2007) no. 12, pp. 2989-2995 | DOI
[20] Sourcing semiclassical gravity from spontaneously localized quantum matter, Phys. Rev. D, Volume 93 (2016) no. 2, 024026, 12 pages | DOI | Zbl | MR
[21] On gravity’s role in quantum state reduction, Gen. Relativ. Gravit., Volume 28 (1996) no. 5, 024026, pp. 581-600 | DOI | MR
[22] On the gravitization of quantum mechanics 1: Quantum state reduction, Found. Phys., Volume 44 (2014) no. 5, pp. 557-575 | DOI | Zbl | MR
[23] Gravitation and quantum mechanics of macroscopic objects, Nuovo Cimento A, Volume 42 (1966) no. 2, pp. 390-402 | DOI | Zbl | MR
[24] Quantum superposition of massive objects and collapse models, Phys. Rev. A, Volume 84 (2011) no. 5, 052121, 17 pages | DOI
[25] When Zeh meets Feynman: how to avoid the appearance of a classical world in gravity experiments, From quantum to classical. Essays in honour of H.-Dieter Zeh (Claus Kiefer, ed.) (Fundamental Theories of Physics), Springer, 2022 no. 204, 052121, pp. 85-95 | DOI
[26] New test of the gravitational law at separations down to 52 µm, Phys. Rev. Lett., Volume 124 (2020) no. 10, 101101, 5 pages | DOI
[27] Improvement for testing the gravitational inverse-square law at the submillimeter range, Phys. Rev. Lett., Volume 124 (2020) no. 5, 051301, 101101 | DOI
[28] Measurement of gravitational coupling between millimetre-sized masses, Nature, Volume 591 (2021) no. 7849, 051301, pp. 225-228 | DOI
[29] Quantum decoherence by Coulomb interaction, New J. Phys., Volume 22 (2020) no. 6, 063039, 8 pages | DOI
[30] Surface-induced decoherence and heating of charged particles, PRX Quantum, Volume 3 (2022) no. 3, 030327, 063039, 39 pages | DOI
[31] Dipole moment background measurement and suppression for levitated charge sensors, Sci. Adv., Volume 8 (2022) no. 41, 030327, pp. 1-7 | DOI
[32] Models for universal reduction of macroscopic quantum fluctuations, Phys. Rev. A, Volume 40 (1989) no. 3, pp. 1165-1174 | DOI
[33] Underground test of gravity-related wave function collapse, Nat. Phys., Volume 17 (2021) no. 1, pp. 74-78 | DOI
[34] Diósi–Penrose model of classical gravity predicts gravitationally induced entanglement, Phys. Rev. D, Volume 111 (2025), L121101, 6 pages | DOI
[35] On tests of the quantum nature of gravitational interactions in presence of non-linear corrections to quantum mechanics, Quantum, Volume 7 (2023), 1157, 16 pages | DOI
[36] A no-go theorem on the nature of the gravitational field beyond quantum theory, Quantum, Volume 6 (2022), 779, 21 pages | DOI
[37] Gravitational effects in macroscopic quantum systems: a first-principles analysis, Class. Quant. Grav., Volume 38 (2021) no. 15, 155012 | DOI | Zbl | MR
[38] Newton, entanglement, and the graviton, Phys. Rev. D, Volume 105 (2022) no. 2, 024029, 17 pages | DOI | MR
[39] On inference of quantization from gravitationally induced entanglement, AVS Quantum Sci., Volume 4 (2022) no. 4, 045601, 19 pages | DOI
Cité par Sources :
Commentaires - Politique
