Comptes Rendus
Article de recherche
Quantum entanglement by gravity as tests of gravitational collapse models à la Diósi and Penrose
[L’intrication quantique par gravité comme test des modèles d’effondrement gravitationnel à la Diósi et Penrose]
Comptes Rendus. Physique, Volume 27 (2026), pp. 1-6

Cet article fait partie du numéro thématique Mesures quantiques coordonné par David Clément et al..  

I provide a simple argument that the experimental observation of gravitationally induced entanglement rules out the validity of current gravitational collapse models. This is consistent with the recent claim to the contrary in [Trillo and Navascués, Phys. Rev. D, 111, (2025)], if one takes into account the physical constraints of actual table-top gravity experiments.

Je présente un argument simple pour montrer que l’observation expérimentale de l’intrication induite par la gravitation exclut la validité des modèles actuels d’effondrement gravitationnel. Ceci est cohérent avec l’affirmation récente du contraire dans [Trillo et Navascués, Phys. Rev. D, 111, (2025)], si l’on prend en compte les contraintes physiques des expériences gravitationnelles réelles sur table.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.270
Keywords: Quantum optomechanics, gravitational quantum physics, quantum sensing
Mots-clés : Optomécanique quantique, physique quantique gravitationnelle, détection quantique

Markus Aspelmeyer  1 , 2

1 University of Vienna, Faculty of Physics, Vienna, Austria
2 Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information (IQOQI) Vienna, Vienna, Austria
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2026__27_G1_1_0,
     author = {Markus Aspelmeyer},
     title = {Quantum entanglement by gravity as tests of gravitational collapse models \protect\emph{\`a la} {Di\'osi} and {Penrose}},
     journal = {Comptes Rendus. Physique},
     pages = {1--6},
     year = {2026},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {27},
     doi = {10.5802/crphys.270},
     language = {en},
}
TY  - JOUR
AU  - Markus Aspelmeyer
TI  - Quantum entanglement by gravity as tests of gravitational collapse models à la Diósi and Penrose
JO  - Comptes Rendus. Physique
PY  - 2026
SP  - 1
EP  - 6
VL  - 27
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.270
LA  - en
ID  - CRPHYS_2026__27_G1_1_0
ER  - 
%0 Journal Article
%A Markus Aspelmeyer
%T Quantum entanglement by gravity as tests of gravitational collapse models à la Diósi and Penrose
%J Comptes Rendus. Physique
%D 2026
%P 1-6
%V 27
%I Académie des sciences, Paris
%R 10.5802/crphys.270
%G en
%F CRPHYS_2026__27_G1_1_0
Markus Aspelmeyer. Quantum entanglement by gravity as tests of gravitational collapse models à la Diósi and Penrose. Comptes Rendus. Physique, Volume 27 (2026), pp. 1-6. doi: 10.5802/crphys.270

[1] M. Schlosshauer Decoherence and the quantum-to-classical transition, The Frontiers Collection, Springer, 2008, L121101 | DOI

[2] T. Kovachy; P. Asenbaum; C. Overstreet; C. A. Donnelly; S. M. Dickerson; A. Sugarbaker; J. M. Hogan; M. A. Kasevich Quantum superposition at the half-metre scale, Nature, Volume 528 (2015) no. 7583, pp. 530-533 | DOI

[3] Yaakov Y. Fein; Philipp Geyer; Patrick Zwick; Filip Kiałka; Sebastian Pedalino; Marcel Mayor; Stefan Gerlich; Markus Arndt Quantum superposition of molecules beyond 25 kDa, Nat. Phys., Volume 15 (2019) no. 12, pp. 1242-1245 | DOI

[4] A D O’Connell; M Hofheinz; M Ansmann; Radoslaw C Bialczak; M Lenander; Erik Lucero; M Neeley; D Sank; H Wang; M Weides; J Wenner; John M Martinis; A N Cleland Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010) no. 7289, pp. 697-703 | DOI

[5] Uroš Delić; Manuel Reisenbauer; Kahan Dare; David Grass; Vladan Vuletić; Nikolai Kiesel; Markus Aspelmeyer Cooling of a levitated nanoparticle to the motional quantum ground state, Science, Volume 367 (2020) no. 6480, pp. 892-895 | DOI

[6] Marius Bild; Matteo Fadel; Yu Yang; Uwe von Lüpke; Phillip Martin; Alessandro Bruno; Yiwen Chu Schrödinger cat states of a 16-microgram mechanical oscillator, Science, Volume 380 (2023) no. 6642, pp. 274-278 | DOI

[7] Ivan Galinskiy; Georg Enzian; Michał Parniak; Eugene S. Polzik Nonclassical correlations between photons and phonons of center-of-mass motion of a mechanical oscillator, Phys. Rev. Lett., Volume 133 (2024), 173605, 6 pages | DOI

[8] Robert M. Wald General relativity, University of Chicago Press, 1984, 173605 | DOI

[9] John F. Donoghue General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D, Volume 50 (1994) no. 6, pp. 3874-3888 | DOI | MR

[10] Matthew D. Schwartz Quantum field theory and the standard model, Cambridge University Press, 2013 | DOI

[11] The role of gravitation in physics. Report from the 1957 Chapel Hill Conference (Cécile M. DeWitt; Dean Rickles, eds.), Max Planck Research Library for the History and Development of Knowledge, 2011 | DOI

[12] Netanel H. Lindner; Asher Peres Testing quantum superpositions of the gravitational field with Bose–Einstein condensates, Phys. Rev. A, Volume 71 (2005) no. 2, 024101, 2 pages | DOI

[13] H. Pino; J. Prat-Camps; K. Sinha; B. Prasanna Venkatesh; O. Romero-Isart On-chip quantum interference of a superconducting microsphere, Quantum Sci. Technol., Volume 3 (2018) no. 2, 025001, 024101, 25 pages | DOI | Zbl

[14] Sougato Bose; Anupam Mazumdar; Gavin W. Morley; Hendrik Ulbricht; Marko Toroš; Mauro Paternostro; Andrew A. Geraci; Peter F. Barker; M. S. Kim; Gerard Milburn Spin entanglement witness for quantum gravity, Phys. Rev. Lett., Volume 119 (2017) no. 24, 240401, 025001, 6 pages | DOI

[15] C. Marletto; V. Vedral Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity, Phys. Rev. Lett., Volume 119 (2017) no. 24, 240402, 240401, 5 pages | DOI | MR

[16] Marios Christodoulou; Carlo Rovelli On the possibility of laboratory evidence for quantum superposition of geometries, Phys. Lett. B, Volume 792 (2019), 240402, pp. 64-68 | DOI

[17] Lin-Qing Chen; Flaminia Giacomini Quantum effects in gravity beyond the Newton potential from a delocalized quantum source, Phys. Rev. X, Volume 15 (2025), 031063, 19 pages | DOI | MR

[18] Lajos Diósi Gravitation and quantum-mechanical localization of macro-objects, Phys. Lett. A, Volume 105 (1984) no. 4–5, 031063, pp. 199-202 | DOI

[19] Lajos Diósi Notes on certain Newton gravity mechanisms of wavefunction localization and decoherence, J. Phys. A. Math. Theor., Volume 40 (2007) no. 12, pp. 2989-2995 | DOI

[20] Antoine Tilloy; Lajos Diósi Sourcing semiclassical gravity from spontaneously localized quantum matter, Phys. Rev. D, Volume 93 (2016) no. 2, 024026, 12 pages | DOI | Zbl | MR

[21] Roger Penrose On gravity’s role in quantum state reduction, Gen. Relativ. Gravit., Volume 28 (1996) no. 5, 024026, pp. 581-600 | DOI | MR

[22] Roger Penrose On the gravitization of quantum mechanics 1: Quantum state reduction, Found. Phys., Volume 44 (2014) no. 5, pp. 557-575 | DOI | Zbl | MR

[23] F. Karolyhazy Gravitation and quantum mechanics of macroscopic objects, Nuovo Cimento A, Volume 42 (1966) no. 2, pp. 390-402 | DOI | Zbl | MR

[24] Oriol Romero-Isart Quantum superposition of massive objects and collapse models, Phys. Rev. A, Volume 84 (2011) no. 5, 052121, 17 pages | DOI

[25] Markus Aspelmeyer When Zeh meets Feynman: how to avoid the appearance of a classical world in gravity experiments, From quantum to classical. Essays in honour of H.-Dieter Zeh (Claus Kiefer, ed.) (Fundamental Theories of Physics), Springer, 2022 no. 204, 052121, pp. 85-95 | DOI

[26] J. G. Lee; E. G. Adelberger; T. S. Cook; S. M. Fleischer; B. R. Heckel New test of the gravitational 1/r 2 law at separations down to 52 µm, Phys. Rev. Lett., Volume 124 (2020) no. 10, 101101, 5 pages | DOI

[27] Wen-Hai Tan; An-Bin Du; Wen-Can Dong; Shan-Qing Yang; Cheng-Gang Shao; Sheng-Guo Guan; Qing-Lan Wang; Bi-Fu Zhan; Peng-Shun Luo; Liang-Cheng Tu; Jun Luo Improvement for testing the gravitational inverse-square law at the submillimeter range, Phys. Rev. Lett., Volume 124 (2020) no. 5, 051301, 101101 | DOI

[28] Tobias Westphal; Hans Hepach; Jeremias Pfaff; Markus Aspelmeyer Measurement of gravitational coupling between millimetre-sized masses, Nature, Volume 591 (2021) no. 7849, 051301, pp. 225-228 | DOI

[29] N. Kerker; R. Röpke; L. M. Steinert; A. Pooch; A. Stibor Quantum decoherence by Coulomb interaction, New J. Phys., Volume 22 (2020) no. 6, 063039, 8 pages | DOI

[30] Lukas Martinetz; Klaus Hornberger; Benjamin A. Stickler Surface-induced decoherence and heating of charged particles, PRX Quantum, Volume 3 (2022) no. 3, 030327, 063039, 39 pages | DOI

[31] Nadav Priel; Alexander Fieguth; Charles P. Blakemore; Emmett Hough; Akio Kawasaki; Denzal Martin; Gautam Venugopalan; Giorgio Gratta Dipole moment background measurement and suppression for levitated charge sensors, Sci. Adv., Volume 8 (2022) no. 41, 030327, pp. 1-7 | DOI

[32] L. Diósi Models for universal reduction of macroscopic quantum fluctuations, Phys. Rev. A, Volume 40 (1989) no. 3, pp. 1165-1174 | DOI

[33] Sandro Donadi; Kristian Piscicchia; Catalina Curceanu; Lajos Diósi; Matthias Laubenstein; Angelo Bassi Underground test of gravity-related wave function collapse, Nat. Phys., Volume 17 (2021) no. 1, pp. 74-78 | DOI

[34] David Trillo; Miguel Navascués Diósi–Penrose model of classical gravity predicts gravitationally induced entanglement, Phys. Rev. D, Volume 111 (2025), L121101, 6 pages | DOI

[35] Giovanni Spaventa; Ludovico Lami; Martin B. Plenio On tests of the quantum nature of gravitational interactions in presence of non-linear corrections to quantum mechanics, Quantum, Volume 7 (2023), 1157, 16 pages | DOI

[36] Thomas D Galley; Flaminia Giacomini; John H Selby A no-go theorem on the nature of the gravitational field beyond quantum theory, Quantum, Volume 6 (2022), 779, 21 pages | DOI

[37] Charis Anastopoulos; Michalis Lagouvardos; Konstantina Savvidou Gravitational effects in macroscopic quantum systems: a first-principles analysis, Class. Quant. Grav., Volume 38 (2021) no. 15, 155012 | DOI | Zbl | MR

[38] Daniel Carney Newton, entanglement, and the graviton, Phys. Rev. D, Volume 105 (2022) no. 2, 024029, 17 pages | DOI | MR

[39] Vasileios Fragkos; Michael Kopp; Igor Pikovski On inference of quantization from gravitationally induced entanglement, AVS Quantum Sci., Volume 4 (2022) no. 4, 045601, 19 pages | DOI

Cité par Sources :

Commentaires - Politique