[Dense networks of interfacial linear defects and Somigliana dislocations]
. A crystalline interface is often covered by a dense network of linear defects with a (pseudo) biperiodic geometry. The elastic field of this network is calculated by thinking the interface as paved by adjacent Somigliana dislocations. The analysis of a portion of an erratic zigzag line of a (001)Si low angle twist boundary, observed in two-beam transmission electron microscopy, is given as an example.
Une interface cristalline est souvent tapissée par un réseau dense de défauts linéaires dont la géométrie est (pseudo-) bipériodique. Le champ élastique de ce réseau est calculé en imaginant l'interface comme un pavage de dislocations de Somigliana adjacentes. Une analyse d'une portion de ligne zigzag erratique d'un sous-joint de torsion (001)Si, observée en microscopie électronique à transmission à deux ondes, est donnée en exemple.
Accepted:
Published online:
Keywords: Dislocation, Elastic field, Interface, Somigliana
Ahlem Boussaid 1; Mustapha Fnaiech 1; Roland Bonnet 2
@article{CRPHYS_2005__6_1_145_0, author = {Ahlem Boussaid and Mustapha Fnaiech and Roland Bonnet}, title = {R\'eseaux denses de d\'efauts lin\'eaires interfaciaux et dislocations de {Somigliana}}, journal = {Comptes Rendus. Physique}, pages = {145--150}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.012}, language = {fr}, }
TY - JOUR AU - Ahlem Boussaid AU - Mustapha Fnaiech AU - Roland Bonnet TI - Réseaux denses de défauts linéaires interfaciaux et dislocations de Somigliana JO - Comptes Rendus. Physique PY - 2005 SP - 145 EP - 150 VL - 6 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2004.11.012 LA - fr ID - CRPHYS_2005__6_1_145_0 ER -
Ahlem Boussaid; Mustapha Fnaiech; Roland Bonnet. Réseaux denses de défauts linéaires interfaciaux et dislocations de Somigliana. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 145-150. doi : 10.1016/j.crhy.2004.11.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.012/
[1] Electron Microscopy of Thin Crystals (R.E. Krieger, ed.), Malabar, FL, USA, 1977, p. 248
[2] Electron Microscopy of Interfaces in Metals and Alloys, Adam Hilger, Bristol, 1991
[3] Structure of the GaAs/InP interface obtained by direct wafer bonding optimised for surface emitting optical devices, J. Appl. Phys., Volume 82 (1997), pp. 4892-4903
[4] HRPACK: a software describing the elastic fields near dislocations and interfaces at atomic scale, Ultramicroscopy, Volume 69 (1997), pp. 241-257
[5] TEM observations on grain boundaries in sintered silicon, Philos. Mag. A, Volume 40 (1979), pp. 589-610
[6] 60° dislocations in (001) GaAs/Si interfaces, Philos. Mag. A, Volume 62 (1990), pp. 319-328
[7] Analyse du contraste d'un sous-joint de torsion (001) dans le silicium en MET à deux ondes, C. R. Physique, Volume 3 (2002), pp. 657-663
[8] Huge differences between low- and high-angle twist grain boundaries: the case of ultrathin (001) films bonded to (001) Si wafers, Appl. Phys. Lett., Volume 77 (2000), pp. 1135-1137
[9] Overview on some recent advances in wafer bonding technologies (H. Baumgart; C.E. Hunt, eds.), Semiconductor Wafer Bonding Science: Technology and Applications VI, Electrochemical Society Proceedings, 2001, pp. 1-16
[10] S. Sas, M. Hines, Etching of dislocations permits fabrication of 100 atom wide nanostructures on silicon, Materials Today, mai–juin 2001, p. 5
[11] Computed Electron Micrographs and Defect Identification, North-Holland, Amsterdam, 1973
[12] Theory of Dislocations, Wiley, New York, 1982 (pp. 76 and 837)
[13] The continuum theory of lattice defects, Solid State Phys., Volume 31 (1956), pp. 79-144
[14] Atomic positions around misfit dislocations on a planar heterointerface, Phys. Rev. B, Volume 49 (1994), pp. 14397-14402
[15] On the use of Somigliana dislocations to describe some interfacial defects, Philos. Mag. A, Volume 51 (1985), pp. 429-448
[16] Evaluation of surface strain due to the reconstruction of atomically close-packed crystalline surfaces, Phys. Rev. B, Volume 61 (2000), pp. 14059-14065
[17] The elastic field of a Volterra dislocation in a planar phase boundary, Philos. Mag. A, Volume 47 (1988), pp. 529-536
[18] The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. London Ser. A, Volume 241 (1957), pp. 376-396
[19] Contraste en MET à deux ondes d'une dislocation rectiligne parallèle à la surface libre d'un cristal anisotrope, Philos. Mag. A, Volume 56 (1987), pp. 815-830
[20] Observations on dislocation nodes in silicon, Philos. Mag., Volume 11 (1965), pp. 1315-1319
[21] The direct observation of dislocation nets in rock salt single crystals, Philos. Mag., Volume 1 (1956), pp. 269-290
[22] Elements of X-Ray Diffraction, Addison-Wesley, Reading, USA, 1967 (p. 484)
[23] The dislocation loop near a free surface, Philos. Mag., Volume 22 (1970), pp. 83-91
Cited by Sources:
Comments - Policy