Comptes Rendus
Physique/Surfaces, Interfaces, Films
Réseaux denses de défauts linéaires interfaciaux et dislocations de Somigliana
Comptes Rendus. Physique, Volume 6 (2005) no. 1, pp. 145-150.

Une interface cristalline est souvent tapissée par un réseau dense de défauts linéaires dont la géométrie est (pseudo-) bipériodique. Le champ élastique de ce réseau est calculé en imaginant l'interface comme un pavage de dislocations de Somigliana adjacentes. Une analyse d'une portion de ligne zigzag erratique d'un sous-joint de torsion (001)Si, observée en microscopie électronique à transmission à deux ondes, est donnée en exemple.

. A crystalline interface is often covered by a dense network of linear defects with a (pseudo) biperiodic geometry. The elastic field of this network is calculated by thinking the interface as paved by adjacent Somigliana dislocations. The analysis of a portion of an erratic zigzag line of a (001)Si low angle twist boundary, observed in two-beam transmission electron microscopy, is given as an example.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crhy.2004.11.012
Mot clés : Dislocation, Champ élastique, Interface, Somigliana
Keywords: Dislocation, Elastic field, Interface, Somigliana
Ahlem Boussaid 1 ; Mustapha Fnaiech 1 ; Roland Bonnet 2

1 Laboratoire d'analyses structurales des materiaux, département de physique, faculté des sciences de Monastir, route de Kairouan, 5000 Monastir, Tunisie
2 Institut national Polytechnique de Grenoble, laboratoire de thermodynamique et physico-chimie métallurgiques (unité mixte de recherche associée au CNRS 5614), École nationale supérieure d'électrochimie et d'électrochimie de Grenoble, domaine universitaire, BP 75, 38402 Saint Martin d'Hères, France
@article{CRPHYS_2005__6_1_145_0,
     author = {Ahlem Boussaid and Mustapha Fnaiech and Roland Bonnet},
     title = {R\'eseaux denses de d\'efauts lin\'eaires interfaciaux et dislocations de {Somigliana}},
     journal = {Comptes Rendus. Physique},
     pages = {145--150},
     publisher = {Elsevier},
     volume = {6},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crhy.2004.11.012},
     language = {fr},
}
TY  - JOUR
AU  - Ahlem Boussaid
AU  - Mustapha Fnaiech
AU  - Roland Bonnet
TI  - Réseaux denses de défauts linéaires interfaciaux et dislocations de Somigliana
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 145
EP  - 150
VL  - 6
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.11.012
LA  - fr
ID  - CRPHYS_2005__6_1_145_0
ER  - 
%0 Journal Article
%A Ahlem Boussaid
%A Mustapha Fnaiech
%A Roland Bonnet
%T Réseaux denses de défauts linéaires interfaciaux et dislocations de Somigliana
%J Comptes Rendus. Physique
%D 2005
%P 145-150
%V 6
%N 1
%I Elsevier
%R 10.1016/j.crhy.2004.11.012
%G fr
%F CRPHYS_2005__6_1_145_0
Ahlem Boussaid; Mustapha Fnaiech; Roland Bonnet. Réseaux denses de défauts linéaires interfaciaux et dislocations de Somigliana. Comptes Rendus. Physique, Volume 6 (2005) no. 1, pp. 145-150. doi : 10.1016/j.crhy.2004.11.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.012/

[1] P. Hirsch; A. Howie; R.B. Nicholson; D.W. Pashley; M.J. Whelan Electron Microscopy of Thin Crystals (R.E. Krieger, ed.), Malabar, FL, USA, 1977, p. 248

[2] C.T. Forwood; L.M. Clarebrough Electron Microscopy of Interfaces in Metals and Alloys, Adam Hilger, Bristol, 1991

[3] G. Patriarche; F. Jeannès; J.-L. Oudar; F. Glas Structure of the GaAs/InP interface obtained by direct wafer bonding optimised for surface emitting optical devices, J. Appl. Phys., Volume 82 (1997), pp. 4892-4903

[4] R. Bonnet; M. Loubradou HRPACK: a software describing the elastic fields near dislocations and interfaces at atomic scale, Ultramicroscopy, Volume 69 (1997), pp. 241-257

[5] H. Föll; D. Ast TEM observations on grain boundaries in sintered silicon, Philos. Mag. A, Volume 40 (1979), pp. 589-610

[6] J.G. Zhu; C.B. Carter 60° dislocations in (001) GaAs/Si interfaces, Philos. Mag. A, Volume 62 (1990), pp. 319-328

[7] R. Bonnet; K. Rousseau; F. Fournel Analyse du contraste d'un sous-joint de torsion (001) dans le silicium en MET à deux ondes, C. R. Physique, Volume 3 (2002), pp. 657-663

[8] J.L. Rouvière; K. Rousseau; F. Fournel; H. Moriceau Huge differences between low- and high-angle twist grain boundaries: the case of ultrathin (001) films bonded to (001) Si wafers, Appl. Phys. Lett., Volume 77 (2000), pp. 1135-1137

[9] H. Moriceau; F. Fournel; O. Rayssac; A.M. Cartier; C. Morales; S. Pocas; M. Zussy; E. Jalaguier; B. Biasse; B. Bataillou; A.M. Papon; C. Lagahe; B. Aspar; C. Maleville; F. Letertre; B. Ghyselen; T. Barge Overview on some recent advances in wafer bonding technologies (H. Baumgart; C.E. Hunt, eds.), Semiconductor Wafer Bonding Science: Technology and Applications VI, Electrochemical Society Proceedings, 2001, pp. 1-16

[10] S. Sas, M. Hines, Etching of dislocations permits fabrication of 100 atom wide nanostructures on silicon, Materials Today, mai–juin 2001, p. 5

[11] A.K. Head; P. Humble; L.M. Clarebrough; A.J. Morton; C.T. Forwood Computed Electron Micrographs and Defect Identification, North-Holland, Amsterdam, 1973

[12] J.P. Hirth; J. Lothe Theory of Dislocations, Wiley, New York, 1982 (pp. 76 and 837)

[13] J.D. Eshelby The continuum theory of lattice defects, Solid State Phys., Volume 31 (1956), pp. 79-144

[14] R. Bonnet; M. Loubradou Atomic positions around misfit dislocations on a planar heterointerface, Phys. Rev. B, Volume 49 (1994), pp. 14397-14402

[15] R. Bonnet; G. Marcon; A. Ati On the use of Somigliana dislocations to describe some interfacial defects, Philos. Mag. A, Volume 51 (1985), pp. 429-448

[16] R. Bonnet Evaluation of surface strain due to the reconstruction of atomically close-packed crystalline surfaces, Phys. Rev. B, Volume 61 (2000), pp. 14059-14065

[17] R. Bonnet The elastic field of a Volterra dislocation in a planar phase boundary, Philos. Mag. A, Volume 47 (1988), pp. 529-536

[18] J.D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. London Ser. A, Volume 241 (1957), pp. 376-396

[19] R. Bonnet; A.J. Morton Contraste en MET à deux ondes d'une dislocation rectiligne parallèle à la surface libre d'un cristal anisotrope, Philos. Mag. A, Volume 56 (1987), pp. 815-830

[20] G.R. Booker; L.M. Brown Observations on dislocation nodes in silicon, Philos. Mag., Volume 11 (1965), pp. 1315-1319

[21] S. Amelinckx The direct observation of dislocation nets in rock salt single crystals, Philos. Mag., Volume 1 (1956), pp. 269-290

[22] B.D. Cullity Elements of X-Ray Diffraction, Addison-Wesley, Reading, USA, 1967 (p. 484)

[23] P.P. Groves; D.J. Bacon The dislocation loop near a free surface, Philos. Mag., Volume 22 (1970), pp. 83-91

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Analyse du contraste d'un sous-joint de torsion (0 0 1) dans le silicium en MET à deux ondes

Roland Bonnet; Karine Rousseau; Frank Fournel

C. R. Phys (2002)


Relaxation plastique d'un film mince par émission de dislocations filantes vis

Roland Bonnet; Sami Youssef; Salem Neily; ...

C. R. Phys (2008)


Champ élastique d'une dislocation rectiligne parallèle aux interfaces : une nouvelle approche

Roland Bonnet

C. R. Phys (2003)