A nanomechanical on-chip test platform has recently been developed to deform under a variety of loading conditions freestanding thin films, ribbons and nanowires involving submicron dimensions. The lab-on-chip involves thousands of elementary test structures from which the elastic modulus, strength, strain hardening, fracture, creep properties can be extracted. The technique is amenable to in situ transmission electron microscopy (TEM) investigations to unravel the fundamental underlying deformation and fracture mechanisms that often lead to size-dependent effects in small-scale samples. The method allows addressing electrical and magnetic couplings as well in order to evaluate the impact of large mechanical stress levels on different solid-state physics phenomena. We had the chance to present this technique in details to Jacques Friedel in 2012 who, unsurprisingly, made a series of critical and very relevant suggestions. In the spirit of his legacy, the paper will address both mechanics of materials related phenomena and couplings with solids state physics issues.
Une plate-forme d'essai nanomécanique sur puce a été récemment développée afin de déformer, sous des conditions de chargement variées, des films minces, rubans et nanofils libres impliquant des dimensions submicroniques. Le laboratoire sur puce comprend des milliers de structures d'essai élémentaires à partir desquelles peuvent être extraits le module d'élasticité et les propriétés de résistance, d'écrouissage, de rupture et de fluage. La technique est adaptée pour des études in situ par microscopie électronique en transmission pour élucider les mécanismes sous-jacents fondamentaux de déformation et de rupture qui, souvent, induisent des effets de dépendance de la taille des échantillons. La méthode permet d'investiguer les couplages électriques et magnétiques ainsi que d'évaluer l'impact de niveaux de contrainte mécanique élevés sur divers phénomènes de physique de l'état solide. Nous avons eu la chance de pouvoir présenter cette technique à Jacques Friedel en 2012, lequel a, sans surprise, émis une série de suggestions critiques et particulièrement pertinentes. En hommage à son héritage scientifique, cet article aborde aussi bien des phénomènes relatifs à la mécanique des matériaux que des questions liées à des couplages en physique de l'état solide.
Mot clés : Essais nanomécaniques, Films minces, Effet de taille, Rupture, MET in situ, Piezoresistance
Thomas Pardoen 1; Marie-Sthéphane Colla 1; Hosni Idrissi 1, 2; Behnam Amin-Ahmadi 2; Binjie Wang 2; Dominique Schryvers 2; Umesh K. Bhaskar 3; Jean-Pierre Raskin 3
@article{CRPHYS_2016__17_3-4_485_0, author = {Thomas Pardoen and Marie-Sth\'ephane Colla and Hosni Idrissi and Behnam Amin-Ahmadi and Binjie Wang and Dominique Schryvers and Umesh K. Bhaskar and Jean-Pierre Raskin}, title = {A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects}, journal = {Comptes Rendus. Physique}, pages = {485--495}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.11.005}, language = {en}, }
TY - JOUR AU - Thomas Pardoen AU - Marie-Sthéphane Colla AU - Hosni Idrissi AU - Behnam Amin-Ahmadi AU - Binjie Wang AU - Dominique Schryvers AU - Umesh K. Bhaskar AU - Jean-Pierre Raskin TI - A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects JO - Comptes Rendus. Physique PY - 2016 SP - 485 EP - 495 VL - 17 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2015.11.005 LA - en ID - CRPHYS_2016__17_3-4_485_0 ER -
%0 Journal Article %A Thomas Pardoen %A Marie-Sthéphane Colla %A Hosni Idrissi %A Behnam Amin-Ahmadi %A Binjie Wang %A Dominique Schryvers %A Umesh K. Bhaskar %A Jean-Pierre Raskin %T A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects %J Comptes Rendus. Physique %D 2016 %P 485-495 %V 17 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2015.11.005 %G en %F CRPHYS_2016__17_3-4_485_0
Thomas Pardoen; Marie-Sthéphane Colla; Hosni Idrissi; Behnam Amin-Ahmadi; Binjie Wang; Dominique Schryvers; Umesh K. Bhaskar; Jean-Pierre Raskin. A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 485-495. doi : 10.1016/j.crhy.2015.11.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.11.005/
[1] Annu. Rev. Mater. Res., 37 (2007), p. 92
[2] JOM, 61 (2009), pp. 24-35
[3] JOM, 63 (2011), pp. 35-42
[4] J. Mech. Sci. Technol., 26 (2012), pp. 545-561
[5] Prog. Mater. Sci., 56 (2011), pp. 654-724
[6] Acta Mater., 51 (2003), pp. 5743-5774
[7] Science, 315 (2007)
[8] Annu. Rev. Mater. Res., 40 (2010), pp. 293-317
[9] Nat. Commun., 6 (2015), p. 5926
[10] Acta Mater., 61 (2013), pp. 205-216
[11] Thin Solid Films, 518 (2009), p. 260
[12] Microelectron. Eng., 84 (2007), p. 2714
[13] J. Microelectromech. Syst., 18 (2009), p. 555
[14] Sens. Actuators, 97–98 (2002), p. 239
[15] Exp. Mech., 43 (2003), pp. 248-255
[16] Eng. Fract. Mech. (2015) (in press) | DOI
[17] J. Microelectromech. Syst., 10 (2001), p. 146
[18] Acta Mater., 51 (2003), pp. 3053-3061
[19] Proc. Natl. Acad. Sci., 102 (2005), p. 14503
[20] J. Microelectromech. Syst., 16 (2007), p. 1219
[21] Appl. Phys. Lett., 94 (2009)
[22] Nanoscale, 5 (2013), pp. 12532-12541
[23] Rev. Sci. Instrum., 82 (2011)
[24] J. Mater. Res., 27 (2012), p. 571
[25] J. Microelectromech. Syst., 21 (2012), p. 822
[26] Comput. Mech., 55 (2015), p. 73
[27] Scr. Mater., 62 (2010), p. 742
[28] Adv. Mater., 23 (2011), p. 2119
[29] Size dependent mechanical behavior of Zr-Ni thin metallic glass films, Université Catholique de Louvain, 2015 (Ph.D. dissertation)
[30] Nat. Commun., 6 (2015), p. 5922
[31] J. Appl. Phys., 112 (2012)
[32] Exp. Mech., 53 (2013) no. 3, p. 441
[33] Rev. Sci. Instrum., 84 (2013)
[34] Appl. Phys. Lett., 99 (2011)
[35] Rev. Sci. Instrum., 83 (2012)
[36] J. Appl. Phys., 113 (2013)
[37] Scr. Mater., 66 (2012), p. 866
[38] Phys. Status Solidi B, 251 (2014), p. 1105
[39] Thin Solid Films, 539 (2013), p. 145
[40] Acta Mater., 60 (2012), p. 1795
[41] J. Mater. Sci., 42 (2007), p. 1709
[42] Acta Mater., 55 (2007), p. 4041
[43] Acta Mater., 53 (2005), p. 1521
[44] Acta Mater., 52 (2004), p. 1699
[45] Acta Mater., 53 (2005), pp. 2169-2179
[46] Plasticity and creep in thin free-standing nanocrystalline Pd films, Université Catholique de Louvain, 2014 (Ph.D. dissertation)
[47] Science, 304 (2004), pp. 422-426
[48] Acta Mater., 5421 (2006), pp. 5421-5432
[49] Acta Mater., 81 (2014), pp. 248-257
[50] J. Mech. Phys. Solids, 62 (2014), pp. 81-98
[51] Acta Mater., 60 (2012), p. 1795
[52] Int. J. Plast., 37 (2012), pp. 140-156
[53] Appl. Phys. Lett., 102 (2013)
[54] Phys. Rev., 919 (1954)
[55] Phys. Rev., 1 (1956)
[56] Phys. Rev., 549 (1950)
[57] J. Appl. Phys., 94 (2003), p. 1079
[58] J. Appl. Phys., 101 (2007)
[59] Annu. Rev. Mater. Res., 39 (2009), p. 203
[60] IEEE Trans. Electron Devices, 29 (1982), p. 64
[61] Phys. Rev. (1964)
[62] J. Appl. Phys., 1838 (1993)
[63] Phys. Rev., 130 (1963)
[64] Nat. Nanotechnol., 5 (2010), p. 225
[65] Nano Lett., 12 (2012), p. 3545
[66] Appl. Phys. Lett., 97 (2010)
[67] Nature, 441 (2006), p. 199
[68] Nano Lett., 9 (2009), p. 2418
[69] J. Mater. Res., 27 (2011), p. 571
[70] J. Appl. Phys., 113 (2013)
[71] Phys. Rev., 71 (1947), p. 717
[72] Nat. Nanotechnol., 3 (2008), p. 311
[73] Nat. Nanotechnol., 1 (2006), p. 42
[74] Nano Lett., 10 (2010), p. 1248
[75] Phys. Rev. Lett., 105 (2010)
[76] Nanotechnology, 22 (2011)
[77] Appl. Phys. Lett., 102 (2013)
Cited by Sources:
Comments - Policy