Comptes Rendus
Condensed matter physics in the 21st century: The legacy of Jacques Friedel
A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects
[Plate-forme versatile d'essai sur puce pour la caractérisation des mécanismes élémentaires de déformation et des couplages électromécaniques dans les objets nanoscopiques]
Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 485-495.

Une plate-forme d'essai nanomécanique sur puce a été récemment développée afin de déformer, sous des conditions de chargement variées, des films minces, rubans et nanofils libres impliquant des dimensions submicroniques. Le laboratoire sur puce comprend des milliers de structures d'essai élémentaires à partir desquelles peuvent être extraits le module d'élasticité et les propriétés de résistance, d'écrouissage, de rupture et de fluage. La technique est adaptée pour des études in situ par microscopie électronique en transmission pour élucider les mécanismes sous-jacents fondamentaux de déformation et de rupture qui, souvent, induisent des effets de dépendance de la taille des échantillons. La méthode permet d'investiguer les couplages électriques et magnétiques ainsi que d'évaluer l'impact de niveaux de contrainte mécanique élevés sur divers phénomènes de physique de l'état solide. Nous avons eu la chance de pouvoir présenter cette technique à Jacques Friedel en 2012, lequel a, sans surprise, émis une série de suggestions critiques et particulièrement pertinentes. En hommage à son héritage scientifique, cet article aborde aussi bien des phénomènes relatifs à la mécanique des matériaux que des questions liées à des couplages en physique de l'état solide.

A nanomechanical on-chip test platform has recently been developed to deform under a variety of loading conditions freestanding thin films, ribbons and nanowires involving submicron dimensions. The lab-on-chip involves thousands of elementary test structures from which the elastic modulus, strength, strain hardening, fracture, creep properties can be extracted. The technique is amenable to in situ transmission electron microscopy (TEM) investigations to unravel the fundamental underlying deformation and fracture mechanisms that often lead to size-dependent effects in small-scale samples. The method allows addressing electrical and magnetic couplings as well in order to evaluate the impact of large mechanical stress levels on different solid-state physics phenomena. We had the chance to present this technique in details to Jacques Friedel in 2012 who, unsurprisingly, made a series of critical and very relevant suggestions. In the spirit of his legacy, the paper will address both mechanics of materials related phenomena and couplings with solids state physics issues.

Publié le :
DOI : 10.1016/j.crhy.2015.11.005
Keywords: Nanomechanical testing, Thin films, Size-effects, Fracture, In situ TEM, Piezoresistance
Mot clés : Essais nanomécaniques, Films minces, Effet de taille, Rupture, MET in situ, Piezoresistance
Thomas Pardoen 1 ; Marie-Sthéphane Colla 1 ; Hosni Idrissi 1, 2 ; Behnam Amin-Ahmadi 2 ; Binjie Wang 2 ; Dominique Schryvers 2 ; Umesh K. Bhaskar 3 ; Jean-Pierre Raskin 3

1 Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium
2 Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan, 171, B-2020 Antwerpen, Belgium
3 Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium
@article{CRPHYS_2016__17_3-4_485_0,
     author = {Thomas Pardoen and Marie-Sth\'ephane Colla and Hosni Idrissi and Behnam Amin-Ahmadi and Binjie Wang and Dominique Schryvers and Umesh K. Bhaskar and Jean-Pierre Raskin},
     title = {A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects},
     journal = {Comptes Rendus. Physique},
     pages = {485--495},
     publisher = {Elsevier},
     volume = {17},
     number = {3-4},
     year = {2016},
     doi = {10.1016/j.crhy.2015.11.005},
     language = {en},
}
TY  - JOUR
AU  - Thomas Pardoen
AU  - Marie-Sthéphane Colla
AU  - Hosni Idrissi
AU  - Behnam Amin-Ahmadi
AU  - Binjie Wang
AU  - Dominique Schryvers
AU  - Umesh K. Bhaskar
AU  - Jean-Pierre Raskin
TI  - A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 485
EP  - 495
VL  - 17
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.11.005
LA  - en
ID  - CRPHYS_2016__17_3-4_485_0
ER  - 
%0 Journal Article
%A Thomas Pardoen
%A Marie-Sthéphane Colla
%A Hosni Idrissi
%A Behnam Amin-Ahmadi
%A Binjie Wang
%A Dominique Schryvers
%A Umesh K. Bhaskar
%A Jean-Pierre Raskin
%T A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects
%J Comptes Rendus. Physique
%D 2016
%P 485-495
%V 17
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2015.11.005
%G en
%F CRPHYS_2016__17_3-4_485_0
Thomas Pardoen; Marie-Sthéphane Colla; Hosni Idrissi; Behnam Amin-Ahmadi; Binjie Wang; Dominique Schryvers; Umesh K. Bhaskar; Jean-Pierre Raskin. A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 485-495. doi : 10.1016/j.crhy.2015.11.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.11.005/

[1] K.J. Hemker; W.N. Sharpe Annu. Rev. Mater. Res., 37 (2007), p. 92

[2] D. Gianola; C. Eberl JOM, 61 (2009), pp. 24-35

[3] Y. Lu; J. Lou JOM, 63 (2011), pp. 35-42

[4] M.F. Pantano; H.D. Espinosa; L. Pagnotta J. Mech. Sci. Technol., 26 (2012), pp. 545-561

[5] J.R. Greer; J.T.M. De Hosson Prog. Mater. Sci., 56 (2011), pp. 654-724

[6] K.S. Kumar; H. Van Swygenhoven; S. Suresh Acta Mater., 51 (2003), pp. 5743-5774

[7] J. Rajagopalan; J.H. Han; M.T. Saif Science, 315 (2007)

[8] O. Kraft; P.A. Gruber; R. Mönig; D. Weygand Annu. Rev. Mater. Res., 40 (2010), pp. 293-317

[9] J.A. El-Awady Nat. Commun., 6 (2015), p. 5926

[10] F. Mompiou; M. Legros; M. Coulombier; J.-P. Raskin; T. Pardoen Acta Mater., 61 (2013), pp. 205-216

[11] A. Boé; A. Safi; M. Coulombier; T. Pardoen; J.-P. Raskin Thin Solid Films, 518 (2009), p. 260

[12] N. André; M. Coulombier; V. de Longueville; D. Fabrègue; T. Gets; S. Gravier; T. Pardoen; J.-P. Raskin Microelectron. Eng., 84 (2007), p. 2714

[13] S. Gravier; M. Coulombier; A. Safi; N. André; A. Boe; J.-P. Raskin; T. Pardoen J. Microelectromech. Syst., 18 (2009), p. 555

[14] M.A. Haque; M.T.A. Saif Sens. Actuators, 97–98 (2002), p. 239

[15] M.A. Haque; M.T.A. Saif Exp. Mech., 43 (2003), pp. 248-255

[16] R. Vayrette; J.-P. Raskin; T. Pardoen Eng. Fract. Mech. (2015) (in press) | DOI

[17] M.A. Haque; M.T.A. Saif J. Microelectromech. Syst., 10 (2001), p. 146

[18] M.A. Haque; M.T.A. Saif Acta Mater., 51 (2003), pp. 3053-3061

[19] Y. Zhu; H.D. Espinosa Proc. Natl. Acad. Sci., 102 (2005), p. 14503

[20] H.D. Espinosa; Y. Zhu; N. Moldovan J. Microelectromech. Syst., 16 (2007), p. 1219

[21] P.O. Theillet; O.N. Pierron Appl. Phys. Lett., 94 (2009)

[22] E. Hosseinian; O.N. Pierron Nanoscale, 5 (2013), pp. 12532-12541

[23] V. Passi; U. Bhaskar; T. Pardoen; U. Sodervall; B. Nilsson; G. Petersson; M. Hagberg; J.-P. Raskin Rev. Sci. Instrum., 82 (2011)

[24] U. Bhaskar; V. Passi; S. Houri; E. Escobedo-Cousin; S.H. Olsen; T. Pardoen; J.-P. Raskin J. Mater. Res., 27 (2012), p. 571

[25] V. Passi; U. Bhaskar; T. Pardoen; U. Sodervall; B. Nilsson; G. Petersson; M. Hagberg; J.-P. Raskin J. Microelectromech. Syst., 21 (2012), p. 822

[26] S.S. Mulay; G. Becker; R. Vayrette; J.-P. Raskin; T. Pardoen; M. Galceran; S. Godet; L. Noels Comput. Mech., 55 (2015), p. 73

[27] M. Coulombier; A. Boe; C. Brugger; J.-P. Raskin; T. Pardoen Scr. Mater., 62 (2010), p. 742

[28] H. Idrissi; M.S. Colla; B. Wang; D. Schryvers; J.-P. Raskin; T. Pardoen Adv. Mater., 23 (2011), p. 2119

[29] M. Ghidelli Size dependent mechanical behavior of Zr-Ni thin metallic glass films, Université Catholique de Louvain, 2015 (Ph.D. dissertation)

[30] M.S. Colla; B. Amin-Ahmadi; H. Idrissi; L. Malet; S. Godet; J.-P. Raskin; D. Schryvers; T. Pardoen Nat. Commun., 6 (2015), p. 5922

[31] F. Ureña; S.H. Olsen; L. Siller; U. Bhaskar; T. Pardoen; J.-P. Raskin J. Appl. Phys., 112 (2012)

[32] S. Houri; U. Bhaskar; B. Gallacher; L. Francis; T. Pardoen; J.-P. Raskin Exp. Mech., 53 (2013) no. 3, p. 441

[33] S. Houri; U.K. Bhaskar; T. Pardoen; J.-P. Raskin Rev. Sci. Instrum., 84 (2013)

[34] E. Escobedo-Cousin; S.H. Olsen; T. Pardoen; U. Bhaskar; J.-P. Raskin Appl. Phys. Lett., 99 (2011)

[35] M. Coulombier; G. Guisbiers; M.-S. Colla; J.-P. Raskin; T. Pardoen Rev. Sci. Instrum., 83 (2012)

[36] G. Guisbiers; M.-S. Colla; M. Coulombier; J.-P. Raskin; T. Pardoen J. Appl. Phys., 113 (2013)

[37] B. Wang; H. Idrissi; H. Shi; M.S. Colla; S. Michotte; J.-P. Raskin; T. Pardoen; D. Schryvers Scr. Mater., 66 (2012), p. 866

[38] H. Idrissi; B. Amin-Ahmadi; B. Wang; D. Schryvers Phys. Status Solidi B, 251 (2014), p. 1105

[39] B. Amin-Ahmadi; H. Idrissi; M. Galceran; M.S. Colla; J.-P. Raskin; T. Pardoen; S. Godet; D. Schryvers Thin Solid Films, 539 (2013), p. 145

[40] M.-S. Colla; B. Wang; H. Idrissi; N. Schryvers; J.-P. Raskin; T. Pardoen Acta Mater., 60 (2012), p. 1795

[41] Q. Wei J. Mater. Sci., 42 (2007), p. 1709

[42] M. Dao; L. Lu; R.J. Asaro; J.T.M. De Hosson; E. Ma Acta Mater., 55 (2007), p. 4041

[43] S. Cheng; E. Ma; Y.M. Wang; L.J. Kecskes; K.M. Youssef; C.C. Koch; U.P. Trociewitz; K. Han Acta Mater., 53 (2005), p. 1521

[44] Y.M. Wang; E. Ma Acta Mater., 52 (2004), p. 1699

[45] L. Lu; R. Schwaiger; Z.W. Shan; M. Dao; K. Lu; S. Suresh Acta Mater., 53 (2005), pp. 2169-2179

[46] M.S. Colla Plasticity and creep in thin free-standing nanocrystalline Pd films, Université Catholique de Louvain, 2014 (Ph.D. dissertation)

[47] L. Lu; Y.F. Shen; X.H. Chen; L.H. Qian; K. Lu Science, 304 (2004), pp. 422-426

[48] M. Dao; L. Lu; Y.F. Shen; S. Suresh Acta Mater., 5421 (2006), pp. 5421-5432

[49] Q.S. Pan; L. Lu Acta Mater., 81 (2014), pp. 248-257

[50] T. Pardoen J. Mech. Phys. Solids, 62 (2014), pp. 81-98

[51] M.-S. Colla; B. Wang; H. Idrissi; N. Schryvers; J.-P. Raskin; T. Pardoen Acta Mater., 60 (2012), p. 1795

[52] B. Wang; H. Idrissi; M. Galceran; M.S. Colla; S. Turner; S. Hui; J.-P. Raskin; T. Pardoen; S. Godet; D. Schryvers Int. J. Plast., 37 (2012), pp. 140-156

[53] B. Amin-Ahmadi; H. Idrissi; R. Delmelle; T. Pardoen; J. Proost; D. Schryvers Appl. Phys. Lett., 102 (2013)

[54] C. Smith Phys. Rev., 919 (1954)

[55] C. Herring; E. Vogt Phys. Rev., 1 (1956)

[56] J. Bardeen; W. Shockley Phys. Rev., 549 (1950)

[57] M.V. Fischetti; Z. Ren; P.M. Solomon; M. Yang; K. Rim J. Appl. Phys., 94 (2003), p. 1079

[58] Y. Sun; S.E. Thompson; T. Nishida J. Appl. Phys., 101 (2007)

[59] M. Chu; Y. Sun; U. Aghoram; S.E. Thompson Annu. Rev. Mater. Res., 39 (2009), p. 203

[60] Y. Kanda IEEE Trans. Electron Devices, 29 (1982), p. 64

[61] O. Tufte; E. Stelzer Phys. Rev. (1964)

[62] K. Matsuda; Y. Suzuki; K. Kanda J. Appl. Phys., 1838 (1993)

[63] J. Aubrey; W. Gubler; T. Henningsen; S. Koenig Phys. Rev., 130 (1963)

[64] J.-P. Colinge; C.-W. Lee; A. Afzalian; N.D. Akhavan; R. Yan; I. Ferain; P. Razavi; B. O'Neill; A. Blake; M. White; A.-M. Kelleher; B. McCarthy; R. Murphy Nat. Nanotechnol., 5 (2010), p. 225

[65] Y.-M. Niquet; C. Delerue; C. Krzeminski Nano Lett., 12 (2012), p. 3545

[66] J.-P. Raskin; J.-P. Colinge; I. Ferain; A. Kranti; C.-W. Lee; N.D. Akhavan; R. Yan; P. Razavi; R. Yu Appl. Phys. Lett., 97 (2010)

[67] R.S. Jacobsen; K.N. Andersen; P.I. Borel; J. Fage-Pedersen; L.H. Frandsen; O. Hansen; M. Kristensen; A.V. Lavrinenko; G. Moulin; H. Ou; C. Peucheret; B. Zsigri; A. Bjarklev Nature, 441 (2006), p. 199

[68] Z. Wu; J.B. Neaton; J.C. Grossman Nano Lett., 9 (2009), p. 2418

[69] U.K. Bhaskar; V. Passi; S. Houri; E. Escobedo-Cousin; S.H. Olsen; T. Pardoen; J.-P. Raskin J. Mater. Res., 27 (2011), p. 571

[70] U.K. Bhaskar; V. Passi; T. Pardoen; J.-P. Raskin J. Appl. Phys., 113 (2013)

[71] J. Bardeen Phys. Rev., 71 (1947), p. 717

[72] A.C.H. Rowe Nat. Nanotechnol., 3 (2008), p. 311

[73] R. He; P. Yang Nat. Nanotechnol., 1 (2006), p. 42

[74] P. Neuzil; C.C. Wong; J. Reboud Nano Lett., 10 (2010), p. 1248

[75] J.S. Mile; A.C.H. Rowe; S. Arscott; C. Renner Phys. Rev. Lett., 105 (2010)

[76] D. Koumela; C. Mercier; G. Dupré; G. Jourdan; C. Marcoux; E. Ollier; S.T. Purcell; L. Duraffourg Nanotechnology, 22 (2011)

[77] U.K. Bhaskar; T. Pardoen; V. Passi; J.-P. Raskin Appl. Phys. Lett., 102 (2013)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Interface controlled plastic flow modelled by strain gradient plasticity theory

Thomas Pardoen; Thierry J. Massart

C. R. Méca (2012)


In situ mechanical TEM: Seeing and measuring under stress with electrons

Marc Legros

C. R. Phys (2014)


Shear-coupled migration of grain boundaries: the key missing link in the mechanical behavior of small-grained metals?

Romain Gautier; Armin Rajabzadeh; Melvyn Larranaga; ...

C. R. Phys (2021)