The Berry phase of wave functions is a key quantity to understand various low-energy properties of matter, among which electric polarisation, orbital magnetism, as well as topological and ultra-relativistic phenomena. Standard approaches to probe the Berry phase in solids rely on the electron dynamics in response to electromagnetic forces. In graphene, probing the Berry phase of the massless relativistic electrons requires an external magnetic field. Here, we show that the Berry phase also affects the static response of the electrons to a single atomic scatterer, through wavefront dislocations in the surrounding standing-wave interference. This provides a new experimental method to measure the graphene Berry phase in the absence of any magnetic field and demonstrates that local disorder can be exploited as probe of topological quantum matter in scanning tunnelling microscopy experiments.
Les interférences de quasiparticules observées par microscopie à effet tunnel sont particulièrement utiles pour étudier les propriétés électroniques de matériaux en surfaces. Ces interférences possèdent des informations sur la surface de Fermi du système et leur résolution en énergie permet, dans certains cas, de reconstruire la relation dispersion. Nous montrons ici que les images d’interférences de quasiparticules peuvent aussi contenir une information sur la phase de Berry qui caractérise la structure de bande du matériau. La phase de Berry est une phase géométrique que les fonctions d’onde electroniques acquièrent lors d’une évolution cyclique dans un espace de paramètres. Elle est quantifiée lorsque la trajectoire de l’évolution ensèrre une singularité des fonctions d’onde. Il s’agit alors d’une propriété topologique de la structure de bande. La phase de Berry dans les solides est traditionnellement mesurée en appliquant des champs électromagnétiques pour forcer les particules à former de trajectoires fermées. L’utilisation de la figure d’interférence de quasiparticules permet de s’extraire de ce paradigme car la phase de Berry peut affecter la réponse statique des électrons au désordre en l’absence de champ électromagnétique.
Published online:
Mot clés : Phase de Berry, Graphène, Microscope à effet tunnel, Topologie, Interférence de quasi-particules, Défaut atomique
Clément Dutreix 1; Hector González-Herrero 2, 3; Ivan Brihuega 2, 3, 4; Mikhail I. Katsnelson 5; Claude Chapelier 6; Vincent T. Renard 6
@article{CRPHYS_2021__22_S4_133_0, author = {Cl\'ement Dutreix and Hector Gonz\'alez-Herrero and Ivan Brihuega and Mikhail~I. Katsnelson and Claude Chapelier and Vincent T. Renard}, title = {Measuring graphene{\textquoteright}s {Berry} phase at $B=0${~T}}, journal = {Comptes Rendus. Physique}, pages = {133--143}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S4}, year = {2021}, doi = {10.5802/crphys.79}, language = {en}, }
TY - JOUR AU - Clément Dutreix AU - Hector González-Herrero AU - Ivan Brihuega AU - Mikhail I. Katsnelson AU - Claude Chapelier AU - Vincent T. Renard TI - Measuring graphene’s Berry phase at $B=0$ T JO - Comptes Rendus. Physique PY - 2021 SP - 133 EP - 143 VL - 22 IS - S4 PB - Académie des sciences, Paris DO - 10.5802/crphys.79 LA - en ID - CRPHYS_2021__22_S4_133_0 ER -
%0 Journal Article %A Clément Dutreix %A Hector González-Herrero %A Ivan Brihuega %A Mikhail I. Katsnelson %A Claude Chapelier %A Vincent T. Renard %T Measuring graphene’s Berry phase at $B=0$ T %J Comptes Rendus. Physique %D 2021 %P 133-143 %V 22 %N S4 %I Académie des sciences, Paris %R 10.5802/crphys.79 %G en %F CRPHYS_2021__22_S4_133_0
Clément Dutreix; Hector González-Herrero; Ivan Brihuega; Mikhail I. Katsnelson; Claude Chapelier; Vincent T. Renard. Measuring graphene’s Berry phase at $B=0$ T. Comptes Rendus. Physique, Volume 22 (2021) no. S4, pp. 133-143. doi : 10.5802/crphys.79. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.79/
[1] Significance of electromagnetic potentials in the quantum theory, Phys. Rev., Volume 115 (1959) no. 3, pp. 485-491 | DOI | MR | Zbl
[2] Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A, Volume 392 (1984) no. 1802, pp. 45-57 | MR | Zbl
[3] Geometric phase memories, Nat. Phys., Volume 6 (2010) no. 3, pp. 148-150 | DOI
[4] et al. An on/off Berry phase switch in circular graphene resonators, Science, Volume 356 (2017) no. 6340, pp. 845-849 | DOI
[5] et al. Two-dimensional gas of massless dirac fermions in graphene, Nature, Volume 438 (2005), pp. 197-200 | DOI
[6] Experimental observation of the quantum hall effect and Berry’s phase in graphene, Nature, Volume 438 (2005), pp. 201-204 | DOI
[7] Imaging standing waves in a two-dimensional electron gas, Nature, Volume 363 (1993), pp. 524-527 | DOI
[8] Giant friedel oscillations on the beryllium (0001) surface, Science, Volume 275 (1997) no. 5307, pp. 1764-1767 | DOI
[9] et al. Direct imaging of the two-dimensional fermi contour: Fourier-transform STM, Phys. Rev. B, Volume 57 (1998), p. R6858-R6861 | DOI
[10] Imaging the surface fermi contour on cu (110) with scanning tunneling microscopy, Surf. Sci., Volume 457 (2000) no. 3, pp. 319-325 | DOI
[11] XIV. The distribution of electrons around impurities in monovalent metals, Philos. Mag., Volume 43 (1952) no. 337, pp. 153-189 | DOI | Zbl
[12] et al. Quasiparticle interference studies of quantum materials, Adv. Mater., Volume 30 (2018) no. 41, 1707628 | DOI
[13] Scattering and interference in epitaxial graphene, Science, Volume 317 (2007) no. 5835, pp. 219-222 | DOI
[14] et al. Quasiparticle chirality in epitaxial graphene probed at the nanometer scale, Phys. Rev. Lett., Volume 101 (2008), 206802 | DOI
[15] Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy, Phys. Rev. B, Volume 86 (2012), 045444 | DOI
[16] Impurity scattering in carbon nanotubes—absence of back scattering—, J. Phys. Soc. Japan, Volume 67 (1998) no. 5, pp. 1704-1713 | DOI
[17] Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., Volume 2 (2006), pp. 620-625 | DOI
[18] Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene, Phys. Rev. Lett., Volume 97 (2006) no. 22, 226801 | DOI
[19] Friedel oscillations at the surfaces of rhombohedral n-layer graphene, Phys. Rev. B, Volume 93 (2016) no. 3, 035413 | DOI
[20] Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models, Eur. Phys. J. B, Volume 77 (2010), pp. 351-362 | DOI
[21] Vacancy and interstitial defects at graphite surfaces: Scanning tunneling microscopic study of the structure, electronic property, and yield for ion-induced defect creation, Phys. Rev. B, Volume 60 (1999), pp. 6007-6017 | DOI
[22] Direct evidence for atomic defects in graphene layers, Nature, Volume 430 (2004), pp. 870-873 | DOI
[23] Defect scattering in graphene, Phys. Rev. Lett., Volume 102 (2009), 236805
[24] et al. Detection of individual gas molecules adsorbed on graphene, Nat. Mater., Volume 6 (2007) no. 9, pp. 652-655 | DOI
[25] et al. Molecular doping of graphene, Nano Lett., Volume 8 (2008) no. 1, pp. 173-177 | DOI
[26] et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane, Science, Volume 323 (2009) no. 5914, pp. 610-613 | DOI
[27] et al. Fluorographene: a two-dimensional counterpart of teflon, Small, Volume 6 (2010) no. 24, pp. 2877-2884 | DOI
[28] Defect-induced magnetism in graphene, Phys. Rev. B, Volume 75 (2007), 125408 | DOI
[29] Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations, Phys. Rev. B, Volume 77 (2008), 035427 | DOI
[30] et al. Atomic-scale control of graphene magnetism by using hydrogen atoms, Science, Volume 352 (2016) no. 6284, pp. 437-441 | DOI
[31] Measuring the Berry phase of graphene from wavefront dislocations in friedel oscillations, Nature, Volume 574 (2019), pp. 219-222 | DOI
[32] Dislocations in wave trains, Proc. R. Soc. Lond. A, Volume 336 (1974) no. 1605, pp. 165-190 | MR | Zbl
[33] Wavefront dislocations in the Aharonov–Bohm effect and its water wave analogue, Eur. J. Phys., Volume 1 (1980) no. 3, pp. 154-162 | DOI | MR
[34] Making waves in physics, Nature, Volume 403 (2000), p. 21-21 | DOI
[35] Chapter 5 Singular optics: Optical vortices and polarization singularities, Progress in Optics, Volume 53, Elsevier, Amsterdam, 2009, pp. 293-363 | DOI
[36] Laser beams: Knotted threads of darkness, Nature, Volume 432 (2004) no. 7014, p. 165-165 | DOI
[37] Bragg–Berry mirrors: reflective broadband q-plates, Opt. Lett., Volume 41 (2016) no. 17, pp. 3972-3975 | DOI
[38] Gauge-invariant Aharonov–Bohm streamlines, J. Phys. A: Math. Theoret., Volume 50 (2017) no. 43, 43LT01 | MR | Zbl
[39] Obstruction and interference in low energy models for twisted bilayer graphene, Phys. Rev. Lett., Volume 125 (2020), 176404 | DOI
[40] Local Berry phase signatures of bilayer graphene in intervalley quantum interference, Phys. Rev. Lett., Volume 125 (2020) no. 11, 116804 | DOI
[41] Geometrical phase shift in friedel oscillations, Phys. Rev. B, Volume 96 (2017) no. 19, 195207 | DOI
[42] Wavefront dislocations reveal the topology of quasi-1D photonic insulators, Nat. Commun., Volume 12 (2021), 3571 | DOI
Cited by Sources:
Comments - Policy